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Abstract

Information integration systems, also knows as mediators, information brokers, or information gath-

ering agents, provide uniform user interfaces to varieties of di�erent information sources. With

corporate databases getting connected by intranets, and vast amounts of information becoming

available over the Internet, the need for information integration systems is increasing steadily.

Our work focuses on query planning in such systems. Query planning is the task of transforming

a user query, represented in the user's interface language and vocabulary, into queries that can

be executed by the information sources. Every information source might require a di�erent query

language and might use di�erent vocabularies. The resulting answers of the information sources

need to be translated and combined before the �nal answer can be reported to the user.

We show that query plans with a �xed number of database operations are insu�cient to extract

all information from the sources, if functional dependencies or limitations on binding patterns are

present. Dependencies complicate query planning because they allow query plans that would other-

wise be invalid. We present an algorithm that constructs query plans that are guaranteed to extract

all available information in these more general cases. This algorithm is also able to handle datalog

user queries.

We examine further extensions of the languages allowed for user queries and for describing infor-

mation sources: disjunction, recursion and negation in source descriptions, negation and inequality

in user queries. For these more expressive cases, we determine the data complexity required of

languages able to represent "best possible" query plans.
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Chapter 1

Introduction

1.1 Information integration

The problem of information integration (a.k.a. information gathering agents) has recently received

considerable attention due to the growing number of structured information sources available online.

The goal of information integration systems (e.g., TSIMMIS [13, 27], HERMES [1], the Internet

Softbot [24], SIMS [4], the Information Manifold [38], Disco [25,49], TransFER [48], Occam [34],

Razor [26], Infomaster [19]) is to provide a uniform query interface to multiple information sources,

thereby freeing the user from having to locate the relevant sources, query each one in isolation, and

combine manually the information from the di�erent sources.

Information integration systems are based on the following general architecture. The user inter-

acts with a uniform interface in the form of a set of global relation names that are used in formulating

queries. These relations are called world relations. The actual data is stored in external sources,

called the source relations. In order for the system to be able to answer queries, we must specify a

mapping between the world relations and the source relations. A common method to specify these

mappings (employed in [38,34]) is to describe each source relation as the result of a conjunctive

query (i.e., a single Horn rule) over the world relations. For example, an information source storing

nonstop 
ights o�ered by United Airlines would be described as follows:

CREATE VIEW Flights by United

SELECT number, from, to

FROM Nonstop

WHERE airline = 'UA'

The relation Nonstop is a world relation and can be used in formulating queries, and relation

Flights by United is a source relation.

Given a query from the user, formulated in terms of the world relations, the system must translate

it to a query that mentions only the source relations, because only these relations are actually

available. That is, the system needs to �nd a query expression, that mentions only the source

1



2 CHAPTER 1. INTRODUCTION

Information Sources

System
Integration
Information

User Interface

Source
Descriptions

Figure 1.1: General architecture of an information integration system. The user in-

terface and the information sources can be modeled for the purpose of query planning

by sets of relations, called world relations and source relations respectively. Source

descriptions relate source and world relations.

relations, and is equivalent to the original query. The new query is called a query plan. The problem

of �nding a query plan is the same as the problem of answering queries using views. In this context,

the views are the relations in the sources. The problem of answering queries using views has also

been investigated in the database literature because of its importance for query optimization and

data warehousing [57,50,10,37,44,43,17].

Most previous work has considered the problem of �nding query plans where the query plan is

required to be equivalent to the original query. In practice, the collection of available information

sources may not contain all the information needed to answer a query, and therefore, we need to re-

sort to maximally-contained query plans. A maximally-contained plan provides all the answers that

are possible to obtain from the sources, but the expression describing the plan may not be equivalent

to the original query. For example, if we only have the Flights by United source available, and

our query asks for all 
ights departing from San Francisco International Airport, then the following

is a maximally-contained query plan:

SELECT 'UA',number,to

FROM Flights by United

WHERE from = 'SFO'
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1.2 Answering queries using views

A view is the result of evaluating a query. The query that generates the view is called view de�nition.

One application of views in current database systems is security. For example, a student is only

allowed to see his or her own grades in the university database system, but not the grades of other

students. This limited access to the database is implemented by de�ning a view for every student

that contains exactly the information that the student is allowed to see. Students then are only

allowed to query their view, but not the underlying database. We will use views in order to describe

information available from information sources. Data stored by information sources can be seen as

views over a global schema.

Query plan

System
Integration
Information

User query

Source
Descriptions

Figure 1.2: Query planning in information integration systems is the task of trans-

forming a user query, represented in the user's interface language and vocabulary, into

queries that can be executed by the information sources. Every information source

might require a di�erent query language and might use di�erent vocabularies. The

resulting answers of the information sources need to be translated and combined before

the �nal answer can be reported to the user.

Example 1.2.1 The examples in this section use a global schema with the relation

Nonstop(airline,number,from,to).

The intended meaning of the tuple hUA,2021,SFO,LAXi in this relation, for example, is that United

Airlines (UA) 
ight 2021 is a nonstop 
ight from San Francisco (SFO) to Los Angeles (LAX). Consider

the following two views:

CREATE VIEW Flights by United
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SELECT from, to

FROM Nonstop

WHERE airline = 'UA'

CREATE VIEW Flights from SFO

SELECT airline, number, to

FROM Nonstop

WHERE from = 'SFO'

View Flights by United stores the nonstop 
ights operated by United Airlines, and the view

Flights from SFO stores the nonstop 
ights out of San Francisco. The �rst view might repre-

sent the data that is available from a United Airlines database, whereas the second view might be

stored in a database at San Francisco International Airport. 2

1.3 Equivalent query plans

The query planning problem in information integration systems is very closely related to the problem

of answering queries using views. User queries are posed in terms of a global schema. Information

sources can be seen as views over this global schema. In order to answer a user query from the data

available from the information sources, the query must be rewritten so that it only uses the views.

Example 1.3.1 A user might be interested to know which nonstop 
ights from San Francisco to

Los Angeles are o�ered. The following is the corresponding SQL query:

SELECT airline, number

FROM Nonstop

WHERE from = 'SFO' AND to = 'LAX'

It is easy to rewrite her query into an equivalent query that uses only the views de�ned in Example

1.2.1. View Flights from SFO stores all nonstop 
ights out of San Francisco, and therefore also all

nonstop 
ights from San Francisco to Los Angeles. It follows that the query rewrite

SELECT airline, number

FROM Flights from SFO

WHERE to = 'LAX'

answers the user's query. The rewriting requires the view Flights from SFO, but does not require

any relations from the global schema. Therefore, it can be answered by querying the database at

San Francisco International Airport. 2

We will refer to queries that can be answered by using the views as query plans.
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1.4 Maximally-contained query plans

The user in Example 1.3.1 was lucky because her query could be answered exactly from the available

views. In general, however, the available views might not provide all the information that is needed

to answer exactly the user's query. In these cases, we still want to give the user some answer, indeed

the \best" answer that can be given using only the available views. The query plan that computes

this \best" answer is called maximally-contained query plan.

Example 1.4.1 The user who was interested in 
ights from San Francisco to Los Angeles might

want to continue her 
ight to Phoenix. Therefore, she might ask for nonstop 
ights from Los Angeles

to Phoenix:

SELECT airline, number

FROM Nonstop

WHERE from = 'LAX' AND to = 'PHX'

Given only the two available sources | the United Airlines 
ight database and the database of San

Francisco International Airport | there is no way to �nd a query plan that only uses these sources

and is equivalent to the original query. Nonetheless, it is possible to extract some information out of

the available sources. Indeed, if United Airlines o�ers nonstop 
ights from Los Angeles to Phoenix,

then this information would be available from the United Airlines 
ight database. The query plan

SELECT 'UA', number

FROM Flights by United

WHERE from = 'LAX' AND to = 'PHX'

requests this information from the United Airlines database. 2

1.5 Functional dependencies

Frequently, relations in databases satisfy functional dependencies. For example, consider the relation

Schedule(airline,number,date,pilot,aircraft).

The intended meaning of the tuple hUA,2021,08/21,Mike,#111i in this relation is that on August

21st United Airline 
ight 2021 has Mike as pilot and is using the aircraft with identi�cation number

#111. Pilots work for one airline only, and airlines don't have joint ownership of aircraft. Therefore,

relation Schedule satis�es the functional dependencies pilot! airline and aircraft! airline.

If we know that pilot Mike works for United Airlines, for example, then we can be sure that Mike

does not work for American Airlines as well.

Using functional dependencies, more information might be extracted from information sources

than would be possible otherwise. Algorithms that don't take functional dependencies into account

in the query planning process might fail to produce all correct answers, i.e. the generated query

plans might not be maximally-contained in the user query.
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Example 1.5.1 Assume that there is an additional view available described by the following de�-

nition:

CREATE VIEW Work Schedule

SELECT date, from, to, pilot, aircraft

FROM Nonstop, Schedule

WHERE Nonstop.airline = Schedule.airline AND

Nonstop.number = Schedule.number

This view would store, for example, the tuple h08/21,SFO,LAX,Mike,#111i expressing that on August

21st pilot Mike 
ies from San Francisco to Los Angeles on aircraft #111. A user might be interested

in all the pilots that work for the same airline as Mike. The corresponding SQL query is:

SELECT S1.pilot

FROM Schedule AS S1, Schedule AS S2

WHERE S1.airline = S2.airline AND

S2.pilot = 'Mike'

View Work Schedule is the only view that stores any information about relation Schedule. Unfor-

tunately, this view doesn't store the airline attribute explicitly. Therefore, without any considera-

tion of functional dependencies, this query couldn't be answered at all. The functional dependencies

pilot! airline and aircraft! airline though can be used to extract more information from

this view. To see that these functional dependencies might really yield more answers, consider the

following instance of view Work Schedule:

date from to pilot aircraft

08/21 SFO LAX Mike #111

09/05 PHX ATL Ann #111

In this example, Mike and Ann 
y the same aircraft. Because of the functional dependency

aircraft ! airline it follows that Mike and Ann work for the same airline. In general, the

query plan

SELECT W1.pilot

FROM Work Schedule AS W1, Work Schedule AS W2

WHERE W1.aircraft = W2.aircraft AND

S2.pilot = 'Mike'

is contained in the user query if this functional dependency holds, but is not contained in the user

query otherwise. 2

Example 1.5.1 showed that functional dependencies might lead to more query plans that are

contained in the given user query. Indeed, we will show that there is no maximally-contained query

plan in this case if the queries are restricted to use join, projection, selection, and union only. More

precisely, for every query plan that is contained in the user query, there is another query plan

contained in the user query that might produce some new answers. In order to get a maximally-

contained query plan it is necessary to consider query plans that contain recursion.
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Example 1.5.2 Using recursion there is a query plan that is maximally-contained in the query of

Example 1.5.1. The maximally-contained recursive query plan is the following:

WITH

RECURSIVE Pilots AS

( SELECT pilot

FROM Work Schedule

WHERE pilot = 'Mike' )

UNION

( SELECT pilot

FROM Work Schedule, Aircraft

WHERE Work Schedule.aircraft = Aircraft.aircraft ),

RECURSIVE Aircraft AS

( SELECT aircraft

FROM Work Schedule

WHERE pilot = 'Mike' )

UNION

( SELECT aircraft

FROM Work Schedule, Pilots

WHERE Work Schedule.pilot = Pilots.pilot ),

SELECT pilot

FROM Pilots

For the convenience of the reader who might be more used to representing recursive queries in

datalog notation instead of SQL, we also give the datalog query that corresponds to the SQL query.

Note that in datalog it is conventional to denote relations and constants by lower case names, and

variables by upper case names.

q(Pilot) :� pilots(Pilot)

pilots(Pilot) :� work schedule(Date,From,To,mike,Aircraft)

pilots(Pilot) :� work schedule(Date,From,To,Pilot,Aircraft), aircraft(Aircraft)

aircraft(Aircraft) :� work schedule(Date,From,To,mike,Aircraft)

aircraft(Aircraft) :� work schedule(Date,From,To,Pilot,Aircraft), pilots(Pilot)

The query computes two intermediate relations, Pilots and Aircraft. Relation Pilots stores all

the pilots that work for the same airline as Mike, and relation Aircraft stores all the aircraft that

are owned by the airline that Mike works for. Obviously, if the tuple h08/21,SFO,LAX,Mike,#111i

is in view Work Schedule, then Mike is one of the pilots in relation Pilots, and aircraft #111

is one of the aircraft in relation Aircraft. More interestingly, if h09/12,ORD,JFK,John,#222i is

in view Work Schedule and aircraft #222 is in relation Aircraft, then John is also one of the

pilots in relation Pilots because of the functional dependency aircraft ! airline. Similarly,

if h09/23,BOS,SEA,Sue,#333i is in view Work Schedule and Sue is a pilot in relation Pilots, then



8 CHAPTER 1. INTRODUCTION

aircraft #333 is also one of the aircraft in relation Aircraft because of the functional dependency

pilot ! airline. 2

1.6 Limitations on binding patterns

We model information sources by describing the data that they store. It might be the case though

that sources do not support arbitrary queries on this data. Instead, they might require that queries

provide values for some of the attributes. We refer to these restrictions as limitations on binding

patterns. One of the reason for limitations on binding patterns is security. A directory server of a

company, for example, usually doesn't allow users to ask for all employees, but only for the phone

number of a speci�c employee. Another reason for limitations on binding patterns is performance.

For example, a query for the phone number given a name might be supported by an index, but

a query for a name given a phone number might require to scan the entire relation. We express

limitations on binding patterns by stating which arguments have to be bound. In the directory

example, the name attribute is likely required to be bound.

Unlike in the presence of functional dependencies, limitations on binding patterns do not increase

the number of possible query plans. A query plan that respects limitations on binding patterns is also

a query plan if we disregard these limitations. However, some query plans that are contained in the

user query might not respect the limitations on binding patterns, and are therefore not executable.

Especially, a maximally-contained query plan might turn out to be not executable.

Example 1.6.1 Consider again the view Flights by United from Example 1.2.1. Assume a user

asks for all nonstop 
ights o�ered by United Airlines:

SELECT number, from, to

FROM Nonstop

WHERE airline = 'UA'

Without limitations on binding patterns, this query has a simple maximally-contained query plan:

SELECT number, from, to

FROM Flights by United

However, the United Airlines database might require that the from attribute is bound in all queries.

The query plan above violates this limitation on binding patterns. Therefore, it could not be

executed. A query plan that is executable is for example the following:

SELECT number, from, to

FROM Flights by United

WHERE from = 'SFO'

2
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Functional dependencies increase the number of possible query plans, and limitations on bind-

ing patterns decrease the number of possible query plans. Both cases complicate query planning.

There might be no conjunctive query plan that respects the limitations on binding patterns and

is maximally-contained in the user query. As in the presence of functional dependencies, recursive

query plans might be required as maximally-contained query plans that respect the limitations on

binding patterns.

Example 1.6.2 Continuing with Example 1.6.1, the following recursive query is a maximally-

contained query plan of the user query that respects the limitations on binding patterns:

WITH

RECURSIVE Flights AS

( SELECT number, from, to

FROM Flights by United

WHERE from = 'SFO' )

UNION

( SELECT F.number, F.from, F.to

FROM Flights, Flights by United AS F

WHERE F.from = Flights.to )

SELECT number, from, to

FROM Flights

q(Number,From,To) :� 
ights(Number,From,To)


ights(Number,sfo,To) :� 
ights by united(Number,sfo,To)


ights(Number,From,To) :� 
ights(N,F,From), 
ights by united(Number,From,To)

The example assumes that the symbol for San Francisco International Airport, SFO, is known and

no other airport symbols are known. The query plan is executable because in the �rst part of the

query, attribute from of Flights by United is bound to SFO, and in the second part of the query,

this attribute is bound to the values of the to attribute of relation Flights. The query computes

all nonstop 
ights o�ered by United Airlines that depart from an airport that can be reached from

San Francisco on United 
ights. Under the given limitations on binding patterns, and assuming that

SFO is the only known airport symbol, this query plan is maximally-contained in the user query. 2

1.7 Recursive user queries

So far, we have restricted users to ask only nonrecursive queries. This query language is su�cient

for many practical applications. One might consider though allowing users to issue more expressive

queries that include recursion. It is obvious that query plans that answer recursive user queries also

might require recursion. The following is an example:

Example 1.7.1 Assume a user has gathered plenty of frequent 
yer miles on United Airlines. Now

she wants to know which destinations she can reach from her home in San Francisco by 
ying United.
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All cities that United 
ies to nonstop from San Francisco are clearly possible destinations. But there

are more. Other cities can be reached by taking two nonstop 
ights in a row, or three, or four, . . .

The SQL query that corresponds to the user's request requires recursion, because it is not known

in advance how many nonstop 
ights are required to reach all the possible destinations from San

Francisco on United. The following is the query that computes the desired answer:

WITH

RECURSIVE Flights AS

( SELECT to

FROM Nonstop

WHERE airline = 'UA' AND from = 'SFO' )

UNION

( SELECT Nonstop.to

FROM Flights, Nonstop

WHERE airline = 'UA' AND

Flights.to = Nonstop.from )

SELECT to

FROM Flights

q(To) :� 
ights(To)


ights(To) :� nonstop(ua,Number,sfo,To)


ights(To) :� 
ights(Stopover), nonstop(ua,Number,Stopover,To)

If the only available view is Flights by United, then the maximally-contained query plan not

surprisingly also requires recursion:

WITH

RECURSIVE Flights AS

( SELECT to

FROM Flights by United

WHERE from = 'SFO' )

UNION

( SELECT Flights by United.to

FROM Flights, Flights by United

WHERE Flights.to = Flights by United.from )

SELECT to

FROM Flights

q(To) :� 
ights(To)


ights(To) :� 
ights by united(Number,sfo,To)


ights(To) :� 
ights(Stopover), 
ights by united(Number,Stopover,To)

2
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1.8 Inequality

We showed in Sections 1.5, 1.6, and 1.7 that query plans with recursion might be required in the

presence of functional dependencies, limitations on binding patterns, or recursive user queries. There

always exists a maximally-contained recursive query plan in these cases. The recursive query plans

we are considering can be expressed in a language called datalog. One of the features of datalog

programs is that they can be executed in polynomial time.

In this section, we consider inequality constraints in user queries. It turns out that inequality

constraints make it much harder to compute all the answers to queries using the views. Indeed, this

computation cannot be done in polynomial time (unless P = NP). The following example illustrates

the increased di�culty of the reasoning that is necessary.

Example 1.8.1 Assume two views are available. The �rst view is Flights from SFO de�ned in

Example 1.2.1. The second view stores departure airport, stopover airport and arrival airport of

two-leg 
ights that are operated by the same airline on both legs of the 
ight.

CREATE VIEW Flights with Stopover

SELECT F1.from, F1.to AS stopover, F2.to

FROM Nonstop AS F1, Nonstop AS F2

WHERE F1.to = F2.from AND

F1.airline = F2.airline

A user might be interested to know all the airlines with direct competition on at least one of their

nonstop 
ights. The following is the corresponding SQL query:

SELECT F1.airline

FROM Nonstop AS F1, Nonstop AS F2

WHERE F1.from = F2.from AND F1.to = F2.to AND

F1.airline <> F2.airline

To see that computing all answers for this query that can be concluded from the views is quite

complicated, consider the instance of the relation Nonstop and the views Flights from SFO and

Flights with Stopover in Figure 1.8.1.

For this instance, \United Airlines" is an answer to the query, because it is in competition with

Delta Airlines (DL) on the route from Phoenix to Salt Lake City. Let us see how we can be sure that

United Airlines has competition on one of its nonstop 
ights.

We know because of the tuple hLAX,UAi in view Flights from SFO that United Airlines 
ies

from San Francisco to Los Angeles. Moreover, because of the tuple hSFO,LAX,PHXi in view

Flights with Stopover there is some airline 
ying from San Francisco via Los Angeles to Phoenix.

If this airline is not United, then United has competition on the San Francisco to Los Angeles route.

So let us assume that this airline is again United. Because of the tuple hLAX,PHX,SLTi in view

Flights with Stopover we know that there is some airline 
ying from Los Angeles via Phoenix to

Salt Lake City. If this airline is not United, then United has competition on the route from Los
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Nonstop

from to airline

SFO LAX UA
LAX PHX UA
PHX SLT UA
SFO PHX DL
PHX SLT DL
SLT SFO DL

UA

LAX
UA

PHX

DL
DL UA

SLT
DL

SFO

Flights from SFO

to airline

LAX UA
PHX DL

Flights with Stopover

from stopover to

SFO LAX PHX
LAX PHX SLT
SFO PHX SLT
PHX SLT SFO
SLT SFO PHX

Figure 1.3: An instance of the relation and views in Example 1.8.1

Angeles to Phoenix. If this airline is again United, then we can continue correspondingly with tuple

hPHX,SLT,SFOi in Flights with Stopover and hSLT,SFO,PHXi in Flights with Stopover to

conclude that either United has competition on the Phoenix to Salt Lake City or Salt Lake City to

San Francisco route respectively, or United 
ies from Phoenix via Salt Lake City to San Francisco

and from Salt Lake City via San Francisco to Phoenix. But in the latter case, United has competi-

tion on the San Francisco to Phoenix route because of tuple hPHX,DLi in Flights from SFO. We

can conclude from this case analysis that United Airlines must have a competitor for at least one of

its nonstop 
ights. 2

1.9 More expressive languages

As we indicated in the previous section, adding to the expressive power of the query languages used

might complicate the query planning process. In this thesis we are going to consider a variety of

further extensions of these languages. For example, we examine the e�ect of allowing union and

recursion in the view de�nitions.

1.10 Organization of thesis

The material in this thesis is organized in �ve chapters. Chapter 2 covers recursive query plans.

As we saw in Examples 1.5.2, 1.6.2, and 1.7.1, recursive query plans are necessary in order to have
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maximally-contained query plans in the presence of functional dependencies, limitations on binding

patterns, and recursive user queries. We show how maximally-contained recursive query plans can

be constructed in all three cases.

The source descriptions that we consider in Chapter 2 are restricted to be conjunctive. In Chapter

3 we extend the ideas introduced in Chapter 2 to sources that contain disjunctive data.

Chapter 4 examines the e�ect of extending the languages used for describing information sources

and allowed in user queries on the complexity required for maximally-contained query plans. The

results show that relatively small extensions of these languages require query plans with more than

polynomial (assuming P 6= NP) data complexity. As a consequence we can conclude that datalog

query plans are not powerful enough in these cases.

Chapter 5 considers the problem of optimizing query plans. Two query plans that produce

identical results might di�er drastically in the number of resources they require. Clearly, query plans

that require fewer resources but produce the same results are preferable. Usually in information

integration it is assumed that data provided by information sources is incomplete. The chapter

examines how knowledge of partial completeness of sources can be used for query optimization.

In Chapter 6 we present the Infomaster system as an example of an information integration

system.

Some of the material presented in this thesis appears in previous conference publications. The

material in Sections 2.3, 2.7 and 2.8, is covered in [17]. Sections 2.4 and 2.6 are presented in [20].

Chapter 5 is covered in [16]. Finally, the material in Chapter 6 appears in [18].



Chapter 2

Recursive Query Plans

Generating query-answering plans for information integration systems requires to translate a user

query, formulated in terms of world relations, to a query that uses relations that are actually stored

in information sources. Previous solutions to the translation problem produced unions of conjunctive

plans, and were therefore limited in their ability to handle recursive queries and to exploit information

sources with binding-pattern limitations and functional dependencies that are known to hold in the

world schema. As a result, these plans were incomplete w.r.t. sources encountered in practice (i.e.,

produced only a subset of the possible answers). We describe the novel class of recursive query

answering plans, which enables us to settle three open problems. First, we describe an algorithm for

�nding a query plan that produces the maximal set of answers from the sources for arbitrary recursive

queries. Second, we extend this algorithm to use the presence of full generalized dependencies in the

world schema. Third, we describe an algorithm for �nding the maximal query plan in the presence

of binding-pattern restrictions in the sources. In all three cases, recursive plans are necessary in

order to obtain a maximal query plan.

2.1 Introduction

In this chapter we consider several important extensions of the problem of �nding a maximally-

contained plan for a query using a set of information sources. In all of these extensions we show that

it is not possible to �nd a maximally-contained plan if we restrict ourselves to nonrecursive plans.

Hence we introduce a new class of recursive query plans and show the following results:

� We describe an algorithm for �nding a maximally-contained plan for cases in which the user

query is recursive. We show that the problem of �nding an equivalent plan in this case is

undecidable.

� We describe an algorithm for �nding a maximally-contained plan when full generalized de-

pendencies are present in the world schema. Full generalized dependencies are a large class of

dependencies, including functional dependencies, for example. The presence of dependencies

14
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further complicates the rewriting problem, because it allows rewritings that are not valid oth-

erwise. Furthermore, we show that in this context there does not always exist a nonrecursive

maximally-contained query plan.

� In practice, many information sources have limitations on the ways they can be accessed.

For example, a name server of an institution, holding the addresses of its employees, will not

provide the list of all employees and their addresses. Instead, it will provide the address for a

given name. We extend our algorithms to the case in which there are limitations on sources,

and they are described by the set of allowed binding patterns. In this case it is known that

recursive plans may be necessary [34]. We describe an algorithm that constructs a recursive

maximally-contained query plan.

Another signi�cant advantage of our algorithms is that they are generative, rather than search-

based. Our algorithms generate the rewriting in time that is polynomial in the size of the query. In

contrast, previous methods [37,44] search the space of possible candidate rewritings, and propose

heuristics for reducing the size of this space [34,38].1 These methods combine the process of �nding

a rewriting with the process of checking whether it is equivalent to the original query (which is NP-

hard). In contrast, our method isolates the process of generating the maximally-contained rewriting,

which can be done much more e�ciently.

2.1.1 Organization of chapter

This chapter is organized as follows. Section 2.2 explains the basic terms we use in the discussion.

Section 2.3 describes the construction of inverse rules, which is the basis for all the algorithms

we describe in this chapter. This section also shows that the construction of the inverse rules

su�ces in order to compute maximally-contained query plans for recursive queries. Section 2.4

describes the extension of the algorithm in the presence of functional dependencies. The algorithm

is extended further to handle the presence of full generalized dependencies in Section 2.5. Section 2.6

describes the algorithm for the case of limitations on binding patterns. The inverse rules described

in Section 2.3 use a set of function symbols. In Section 2.7 we show how these function symbols can

be removed, to obtain query plans that are datalog queries.

2.2 Preliminaries

2.2.1 Relations and queries

We model the world schema and the information sources by sets of relations. For every relation,

we associate an attribute name to each of its arguments. For example, the attribute names of the

1The algorithm in [38] checks whether the plans can be executed given the binding-pattern restrictions, but is not
guaranteed to produce the maximally-contained rewriting when these restrictions are present. The algorithm in [34]
produces only conjunctive plans that are guaranteed to adhere to the limitations on binding patterns, but is not

guaranteed to compute the maximally-contained plan.
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binary relation author may be Paper and Person. For a tuple t of a relation r with attribute A,

we denote by t[A] the value of the attribute A in t.

We consider datalog queries over sets of relations. A datalog query is a is set of function-free

Horn rules of the form

p( �X) :� p1( �X1); : : : ; pn( �Xn)

where p, and p1; : : : ; pn are predicate names, and �X, �X1; : : :, �Xn are tuples of variables or constants.

The head of the rule is p( �X), and its body is p1( �X1), : : :, pn( �Xn). Each pi( �Xi) is a subgoal of the

rule. We require that the rules be safe, i.e., every variable in the head of a rule must also occur in

the body of the rule. A predicate is an intensional database predicate, or IDB predicate, in a query

Q if it appears as the head of some rule in Q. Predicates not appearing in any head are extensional

database predicates, or EDB predicates. We assume that every query has an IDB predicate q, called

the query predicate, that represents the result of Q.

The input of a datalog query Q consists of a database D storing extensions of all EDB predicates

in Q. Given such a database D, a bottom-up evaluation is one in which we start with the ground

EDB facts in D and apply the rules to derive facts for the IDB predicates. The output of Q, denoted

Q(D), is the set of ground facts generated for the query predicate in the bottom-up evaluation.

As an intermediate result of our algorithms, we will construct datalog programs with function

symbols. That is, some of the arguments in the bodies or the heads of the rules are functional terms.

When datalog queries contain function symbols we will refer to them as logic queries. In general,

the bottom-up evaluation of a logic query may not terminate. As it turns out, we introduce function

symbols in a controlled fashion, and in particular, the evaluation of our logic queries is guaranteed

to terminate. Furthermore, we show in Section 2.7 how to remove the function symbols.

Given a query, we can de�ne a dependency graph, whose nodes are the predicate names appearing

in the rules. There is an edge from the node of predicate pi to the node of predicate p if pi appears

in the body of a rule whose head predicate is p. The query is recursive if there is a cycle in the

dependency graph. A conjunctive query is a single nonrecursive function-free Horn rule. A recursive

datalog query can be seen as a �nite encoding of a potentially in�nite set of conjunctive queries.

Example 2.2.1 Consider the following datalog query:

Q: q(X;Y ) :� edge(X;Z); edge(Z; Y ); black(Z)

q(X;Y ) :� edge(X;Z); black(Z); q(Z; Y )

Predicates edge and black are EDB predicates, and predicate q is an IDB predicate. The query is

recursive because its dependency graph has a self-loop on predicate q. Datalog query Q encodes the

following in�nite set of conjunctive queries:

q(X;Y ) :� edge(X;Z1); edge(Z1; Y ); black(Z1)

q(X;Y ) :� edge(X;Z1); edge(Z1; Z2); edge(Z2; Y );

black(Z1); black(Z2)

q(X;Y ) :� edge(X;Z1); edge(Z1; Z2); edge(Z2; Z3); edge(Z3; Y );
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black(Z1); black(Z2); black(Z3)

...

2

2.2.2 Containment

A datalog query Q0 is contained in a datalog query Q if, for all databases D, Q0(D) is a subset of

Q(D). Datalog queries Q0 and Q are equivalent if Q0 and Q are contained in one another. The

problem of determining whether a datalog query Q0 is contained in a datalog query Q is in general

undecidable [47]. The problem remains decidable if either Q0 or Q are nonrecursive [45,12]. In our

discussion we use the following algorithm from [45] to test when a union of conjunctive queries Q0 is

contained in a recursive query Q.2 First, replace all variables in Q0 by distinct constants. Consider

the database Dc that contains exactly the tuples corresponding to the subgoals in the \frozen"

bodies of the rules in Q0. Dc is called the canonical database of Q0. Evaluate Q on the canonical

database. Q0 is contained in Q if and only if the \frozen" heads of the rules in Q0 are contained in

Q(Dc).

Example 2.2.2 Let Q be the following datalog query:

Q: q(X;Y ) :� edge(X;Z); edge(Z; Y ); black(Z)

q(X;Y ) :� edge(X;Z); black(Z); q(Z; Y )

To determine whether the nonrecursive datalog query

Q0: q(X;Y ) :� edge(X;Z); edge(Z; Y ); black(X); black(Z)

q(X;Y ) :� edge(X;V ); edge(V;W ); edge(W;Y ); black(V ); black(W )

is contained in Q, we replace the variables in the two rules by distinct constants:

q(c1; c3) :� edge(c1; c2); edge(c2; c3); black(c1); black(c2)

q(c4; c7) :� edge(c4; c5); edge(c5; c6); edge(c6; c7); black(c5); black(c6)

The following is the corresponding canonical database:

edge

hc1; c2i, hc2; c3i, hc4; c5i, hc5; c6i, hc6; c7i

black

hc1i, hc2i, hc5i, hc6i

The output of datalog query Q on the canonical database is hc1; c3i, hc4; c6i, hc5; c7i, and hc4; c7i.

Because this output contains hc1; c3i and hc4; c7i, Q
0 is contained in Q. 2

2Recall that every nonrecursive datalog program can be translated into an equivalent union of conjunctive queries.
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2.2.3 Functional dependencies

An instance of a relation p satis�es the functional dependency A1; : : : ; An ! B if for every two tuples

t and u in p with t:Ai = u:Ai for i = 1; : : : ; n, also t:B = u:B. We will abbreviate a set of attributes

A1; : : : ; An by �A.

When the relations satisfy a set of functional dependencies �, we re�ne our notion of containment

to relative containment: Query Q0 is contained in query Q relative to �, denoted Q0 �� Q, if for

each database D satisfying the functional dependencies in �, Q0(D) � Q(D).

In order to decide containment of conjunctive queries in the presence of functional dependencies,

Aho et al. [2] show that it su�ces to precede the containment algorithm by applying the chase

algorithm to the contained query. A step in applying the chase to the body of a conjunctive query

Q is the following. If the functional dependency �A ! B holds for a relation p, and a conjunctive

query Q has two subgoals of p, g1 and g2, with the same variables or values for the attributes �A,

and g1 has a variable X for attribute B, then we replace the occurrences of X in Q by the value or

variable for B in g2.

2.2.4 Full generalized dependencies

Functional dependencies are a special form of a more general kind of dependencies, called full

generalized dependencies3 . A full generalized dependency � is a �rst-order formula of the form

8 �X [ �( �X))  ( �Y ) ]

where �( �X) is a conjunction of relations and equality assertions with variables �X,  ( �Y ) is a relation

or an equality assertion with variables �Y , and �Y � �X. If  is an equality assertion, then � is called an

equality generating dependency. If  is a relation, then � is called a tuple generating dependency. In

examples, we will omit the universal quanti�cation for the sake of brevity. A functional dependency

A! B of relation p(A;B;C) is an equality generating dependency because it can be written in the

form

8X 8Y 8Z 8Y 0 8Z0 [ p(X;Y; Z) ^ p(X;Y 0Z0)) Y = Y 0 ].

Query Q0 is contained in query Q relative to a set of full generalized dependencies �, denoted

Q0 �� Q, if for each database D satisfying the full generalized dependencies in �, Q0(D) � Q(D).

2.2.5 Information sources and query plans

The schema of an information integration system includes a set of virtual relations. The relations

in the mediator are virtual because their extensions are not actually stored. Their role is to provide

the user a uniform interface to a multitude of information sources. We refer to the schema of the

mediator as the world schema, and to the relations in the world schema as world relations. The

3Full generalized dependencies include also two other well-known dependencies, namely multivalued dependencies

and join dependencies.
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actual data is stored in a set of external information sources. We model each source by containing the

extension of a source relation. The set of source relations is disjoint from the set of world relations.

To answer user queries, the mediator must also have a mapping between the global and source

relations. We follow the approach taken in [38,34,19], where the mappings (a.k.a. source descriptions)

are speci�ed by a set of conjunctive queries, one for every source relation. The predicates in the

heads of the conjunctive queries are source relations, and the predicates in their bodies are world

relations. The meaning of such a mapping is that all the tuples that are found in the information

source satisfy the query over the world relations. Several authors have distinguished the case in

which the source contains all the tuples that satisfy the query from the case in which some tuples

may be missing from the source [22,23,16,36]. We will examine this distinction in detail in Chapters

4 and 5. For the discussion in this chapter this distinction does not matter.

Example 2.2.3 Consider a world schema that includes the relations parent, male and female. The

source descriptions below say that the source relations v1, v2, and v3 store the father, the daughter,

and the grandmother relation, respectively.

v1(X;Y ) :� parent(X;Y ); male(X)

v2(X;Y ) :� parent(Y;X); female(X)

v3(X;Y ) :� parent(X;Z); parent(Z; Y ); female(X)

2

Given a query Q from the user, the mediator needs to formulate a query plan, which is a query

that bottoms out in the source relations and produces answers to Q. A query plan is a set of Horn

rules whose EDB predicates include only the source relations. The expansion Pexp of a query plan

P is obtained from P by replacing all source relations with their corresponding source descriptions.

Existentially quanti�ed variables in view de�nitions are replaced by new variables in the expansion.

Example 2.2.4 The following query plan determines all grandparents of ann from the source de-

scribed in Example 2.2.3:

p(X;Y ) :� v1(X;Y )

p(X;Y ) :� v2(Y;X)

q(X) :� p(X;Z); p(Z; ann)

q(X) :� v3(X; ann)

The expansion of this query plan is the following datalog query:

p(X;Y ) :� parent(X;Y ); male(X)

p(X;Y ) :� parent(Y;X); female(X)

q(X) :� p(X;Z); p(Z; ann)

q(X) :� parent(X;Z); parent(Z; Y ); female(X)

2
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2.2.6 Equivalent vs. maximally-contained query plans

A query plan P is contained in a datalog query Q if Pexp is contained in Q, and is equivalent to

Q if Pexp is equivalent to Q. A query plan P is maximally-contained in a datalog query Q if P is

contained in Q, and for every query plan P0 that is contained in Q, P0 is already contained in P.

Containment and maximal containment relative to a set of functional dependencies � or relative to

a set of full generalized dependencies � is de�ned accordingly. Note that the notion of maximal

containment is relative to a �xed set of source relations.

Ideally, the mediator would try to �nd a query plan that is equivalent to the user query. However,

in practice we may not have su�cient information sources to completely answer the user query.

Hence, the mediator tries to �nd the maximally-contained query plan. In a sense, the maximally-

contained query plan produces all the answers to the query that could be retrieved from the available

sources. Of course, if there exists a plan that is equivalent to the user query then it will be a

maximally-contained plan.

In this chapter we focus on �nding maximaly-contained plans. As it turns out, in the cases we

consider in this chapter, the maximally-contained query plan may have to be a recursive datalog

program. Furthermore, we show that if the query Q is recursive, then �nding an equivalent query

plan is undecidable, while �nding a maximally-contained query plan is decidable.

2.3 Inverse rules and recursive queries

In this section we �rst describe how to compute a set of inverse rules from a given set of source

descriptions. Intuitively, inverse rules can be viewed as query plans for the world relations. Inverse

rules are common to all the constructions we describe in this chapter. We then show that the inverse

rules themselves, together with a recursive datalog query Q provide a maximally-contained plan for

Q. It should be noted that previous work considered the construction of query plans given source

descriptions for nonrecursive datalog user queries only. Finally, we show that the problem of �nding

an equivalent query plan for recursive queries is undecidable.

As explained below, in constructing the inverse rules we use function symbols. These function

symbols can later be eliminated, as we will show in Section 2.7. We use the following set of function

symbols in inverse rules. For every source relation v with a variable Zi in the body but not in the

head of its source description, we have a function symbol fv;i.

De�nition 2.3.1 (inverse rules) Let v be a source relation de�ned by the view de�nition

v( �X ) :� p1( �X1); : : : ; pn( �Xn).

Then for j = 1; : : : ; n,

pj( �X
0
j) :� v( �X)

is an inverse rule of v, denoted v�1. We modify �Xj to obtain the tuple �X
0
j as follows: if X is a

constant or is a variable in �X, then X is unchanged in X0
j . Otherwise, X is one of the variables Zi

appearing in the body of v but not in �X, and X is replaced by fv;i( �X) in �X
0
j. 2
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We denote the set of inverse rules of the view de�nitions in V by V�1.

Example 2.3.1 The inverse of the view de�nitions

v1(X;Y ) :� edge(X;Z1); edge(Z1; Z2); edge(Z2; Y )

v2(X) :� edge(X;Z1)

is the following set of rules:

edge(X; fv1;1(X;Y )) :� v1(X;Y )

edge(fv1;1(X;Y ); fv1;2(X;Y )) :� v1(X;Y )

edge(fv1;2(X;Y ); Y ) :� v1(X;Y )

edge(X; fv2;1(X)) :� v2(X)

2

In the following we will abbreviate the function symbols fv;i by function symbols like f , g, h, f1,

f2, etc.

Given a datalog query Q and a set of conjunctive source descriptions V, the construction of the

query plan is quite simple. We delete all rules fromQ that contain world relations that do not appear

in any of the source descriptions. To the resulting query, denoted Q�, we add the rules of V�1,

and call the query so obtained (Q�;V�1). Notice that the EDB predicates of the remaining rules

of Q are IDB predicates in (Q�;V�1), because they appear in heads of the rules in V�1. Because

naming of IDB predicates is arbitrary, one could rename the IDB predicates in (Q�;V�1) so that

their names di�er from the names of the corresponding EDB predicates in Q. For ease of exposition,

we will not do it here.

Example 2.3.2 Consider the recursive query

Q: q(X;Y ) :� edge(X;Y )

q(X;Y ) :� edge(X;Z); q(Z; Y )

which determines the transitive closure of the relation edge. Assume there is only one information

source available:

v(X;Y ) :� edge(X;Z); edge(Z; Y )

View v stores endpoints of paths of length two. Just using this view, there is no way to determine

the transitive closure of the relation edge. The best one can hope to achieve is to compute the

endpoints of paths of even lengths. Relation edge, the only EDB predicate in Q, appears in the

de�nition of v. Therefore, (Q�;V�1) is just Q with the rules of v�1 added:

(Q�;V�1): q(X;Y ) :� edge(X;Y )

q(X;Y ) :� edge(X;Z); q(Z; Y )

edge(X; f(X;Y )) :� v(X;Y )

edge(f(X;Y ); Y ) :� v(X;Y )
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(Q�;V�1) indeed yields all endpoints of paths of even length in its result. For example, assume that

an instance of the EDB predicate edge in Q represents the following graph:

G :
h h h h h- - - -

a b c d e

(Q�;V�1) introduces three new constants, named f(a; c), f(b; d), and f(c; e). The IDB predicate

edge in V�1 represents the following graph:

G0 :
h h h h h

h h h
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a b c d e

f(a,c) f(b,d) f(c,e)

Q� computes the transitive closure of G0. Notice that the pairs in the transitive closure of G0 that

do not contain any of the new constants are exactly the endpoints of paths of even length in the

original graph G. 2

The query (Q�;V�1) is a logic query because the inverse rules contain function symbols. In

order to show that it is the maximally-contained plan of of Q, we �rst show that the evaluation of

(Q�;V�1) will terminate on every database.

Bottom-up evaluation of logic queries is not guaranteed to terminate in general. It might be

possible to generate terms with arbitrarily deeply nested function symbols. For example, bottom-up

evaluation of the logic query

q(X) :� p(X)

q(f(X)) :� q(X)

contains the in�nite number of terms a, f(a), f(f(a)), : : : in its answer, if the EDB predicate p

contains the constant a.

In contrast, our construction produces logic queries whose bottom-up evaluation is guaranteed

to terminate. The key observation is that function symbols are only introduced in inverse rules.

Because inverse rules are not recursive, no terms with nested function symbols can be generated.

Lemma 2.3.1 For every datalog query Q, every set of conjunctive source descriptions V, and all

�nite instances of the source relations, the logic query (Q�;V�1) has a unique �nite minimal �xpoint.

Therefore, bottom-up evaluation is guaranteed to terminate, and produces this unique �xpoint.

Proof. Q� is recursive, but does not introduce function symbols. On the other hand, V�1

introduces function symbols, but is not recursive. Moreover, the IDB predicates of V�1 depend

only on the EDB predicates. Therefore, every bottom-up evaluation of (Q�;V�1) will necessarily
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progress in two stages. In the �rst stage, the extensions of the IDB predicates in V�1 are determined.

The second stage will then be a standard datalog evaluation of Q�. Because datalog queries have

unique �nite minimal �xpoints, this proves the claim. 2

Given extensions for its EDB predicates, a logic query might produce tuples containing function

symbols in its result. Because the extensions of EDB predicates do not contain any function symbols,

no datalog query produces tuples in its result containing function symbols. Hence, in order to

compare between the result of evaluating Q to that of evaluating (Q�;V�1) on a set of information

sources, we need to de�ne a �lter that gets rid of all extraneous tuples with functional terms. If D

is a set of sources containing tuples of the EDB predicates of a query plan with function symbols P,

then let P(D) # be the set of all tuples in P(D) that do not contain function symbols. Let P # be

the plan that given the sources D computes P(D)#.

The following theorem shows that the simple construction of adding the inverse rules to Q yields

a logic query that uses the source relations in the best possible way. That is, after discarding all

tuples containing function symbols, the result of (Q�;V�1) is contained in Q. Moreover, the result

of every query plan that is contained in Q is already contained in (Q�;V�1).

Theorem 2.3.1 For every datalog query Q and every set of conjunctive source descriptions V, the

query plan (Q�;V�1) # is maximally-contained in Q. Moreover, (Q�;V�1) can be constructed in

time polynomial in the size of Q and V.

Proof. First we prove that (Q�;V�1) # is contained in Q. Let E1; : : : ; En be instances of the

EDB predicates in Q. E1; : : : ; Em determine the instances of the source relations in V which in

turn are the EDB predicates of (Q�;V�1). Assume that (Q�;V�1) produces a tuple t that does

not contain any function symbols. Consider the derivation tree of t in (Q�;V�1). All the leaves

are source relations because source relations are the only EDB predicates of (Q�;V�1). Removing

all leaves from this tree produces a tree with the original EDB predicates from Q as new leaves.

Because the instances of the source relations are derived from E1; : : : ; En, there are constants in

E1; : : : ; En such that consistently replacing function terms with these constants yields a derivation

tree of t in Q. Therefore, (Q�;V�1)# is contained in Q.

Let P be an arbitrary query plan contained in Q. We have to prove that P is also contained

in (Q�;V�1). Let cv be an arbitrary conjunctive query generated by P. If we can prove that cv is

contained in (Q�;V�1), then P is contained in (Q�;V�1), which proves the claim. Let Dc be the

canonical source of cexpv . Because cexpv is contained in Q, cexpv (Dc) is contained in the output of Q

applied to Dc. Let c be the conjunctive query generated by Q that produces cexpv (Dc). Because all

predicates of query c are also in cexpv , and all predicates in cexpv appear in some view de�nition, c

is also generated by Q�. Because cexpv is contained in c, there is a containment mapping h from c

to cexpv [6]. Every variable Z in cexpv that does not appear in cv is existentially quanti�ed in some

view de�nition vi(X1; : : : ; Xm) in cv. Let k be the mapping that maps every such variable Z to the

corresponding term f(X1; : : : ; Xm) used in v
�1
i in the expansion of cv. Because Q

� can derive c, Q�

can also derive the more specialized conjunctive query k(h(c)). Using rules in V�1, the derivation

of k(h(c)) in Q� can be extended to a derivation of a conjunctive query c0 that contains only source
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relations. The identity mapping is a containment mapping from c0 to cv. Therefore, P is contained

in (Q�;V�1).

(Q�;V�1) can be constructed in time polynomial in the size of Q and V, because every subgoal

in a view de�nition in V corresponds to exactly one inverse rule in V�1. 2

As stated earlier, if there exists an equivalent plan for a query Q, it will be a maximally-contained

plan. However, since equivalence of datalog programs is undecidable in general, we cannot test

whether (Q�;V�1) is an equivalent plan by testing whether it is equivalent to Q. Moreover, the

following theorem shows that the problem of whether there exists a query plan equivalent to Q is

undecidable.

Theorem 2.3.2 Given a datalog query Q and conjunctive view de�nitions, it is undecidable whether

there is a query plan P equivalent to Q.

Proof. Let Q1 and Q2 be two arbitrary datalog queries. We show that a decision procedure for

the above problem would allow us to decide whether Q1 is contained inQ2. Because the containment

problem for datalog queries is undecidable, this proves the claim. Without loss of generality we can

assume that there are no IDB predicates with the same name in Q1 and Q2, and that the query

predicates in Q1 and Q2, named q1 and q2 respectively, have arity m. Let Q be the datalog query

consisting of all the rules in Q1 and Q2, and of the rules

q(X1; : : : ; Xm) :� q1(X1; : : : ; Xm); e()

q(X1; : : : ; Xm) :� q2(X1; : : : ; Xm)

where e is a new zero-ary global relation. For every global relation ei(X1; : : : ; Xki) in Q1 and Q2

(but not for e) assume there is a source relation described by the view de�nition

vi(X1; : : : ; Xki) :� ei(X1 : : : ; Xki).

We show that Q1 is contained in Q2 if and only if there is a query plan P equivalent to Q.
00 )00: Assume Q1 is contained in Q2. Then Q is equivalent to the query plan P consisting of

all the rules of Q2 with ei's replaced by the corresponding vi's, and the additional rule

q(X1; : : : ; Xm) :� q2(X1; : : : ; Xm).

00 (00: Assume there is a query plan P equivalent to Q. Then for any instantiation of the

global relations, Q and Pexp yield the same result, especially for instantiations where e is the empty

relation, and where e contains the empty tuple. If e is the empty relation then Q produces exactly

the tuples produced by Q2, and therefore Pexp does likewise. If e contains the empty tuple then

Q produces the union of the tuples produced by Q1 and Q2, and hence Pexp produces this union.

No view de�nition contains relation e. Therefore Pexp does not contain relation e. It follows that

Pexp will produce the same set of tuples regardless of the instantiation of e. It follows that Q2 is

equivalent to the union of Q1 and Q2. Therefore, Q1 is contained in Q2. 2
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2.4 Functional dependencies

In this section we consider the problem of generating a maximally-contained plan for a query Q in

the presence of functional dependencies in the world schema. We begin by describing an algorithm

for generating a maximally-contained plan, and in the end of the section we show recursive plans

may be necessary in this context.

We use the following example throughout this section to illustrate the di�culties introduced by

functional dependencies and to present our algorithm. Suppose we have the following world relations

conference(Paper,Conference),

year(Paper,Year),

location(Conference,Year,Location)

The relations describe the conference at which a paper was presented, the publication year of a

paper, and the location a conference was held at in a given year. A paper is only presented at one

conference and published in one year. Also, in a given year a conference is held at a speci�c location.

Therefore we have three functional dependencies:

conference: Paper ! Conference

year: Paper ! Year

location: Conference, Year ! Location

Suppose we have the following information sources:

v1(P;C; Y ) :� conference (P;C); year (P; Y )

v2(P;L) :� conference (P;C); year (P; Y ); location (C; Y; L)

v1 tells us in which conference and year a paper was presented, and v2 stores the location of the

presentation of a paper directly with the paper. Assume a user wants to know where PODS '89 was

held:

q(L) :� location(pods; 1989; L)

The following plan would answer the query:

q(L) :� v1(P; pods; 1989); v2(P;L)

Informally, the query plan proceeds as follows. It �rst �nds some paper presented at PODS '89

using v1 and then �nds the location of the conference this paper was presented at using v2. This

plan is correct only because every paper is presented at one conference and in one year. In fact,

if these dependencies were not to hold, there would be no way of answering this query using the

sources. It is also important to note that source relation v1 is needed in the query plan, even though

the predicates in v1, conference and year, don't appear in the query Q at all. Without functional

dependencies, only source descriptions that contain predicates appearing in the user query need to

be considered [37].
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In the following we are going to give a construction of query plans that is guaranteed to be

maximally-contained in the given queries, even in the presence of functional dependencies. As in the

previous section, we begin by computing the set of inverse rules, whose purpose is to recover tuples

of the world relations from the source relations. The inverse rules for v1 and v2 in our example are:

r1 : conference (P;C) :� v1(P;C; Y )

r2 : year (P; Y ) :� v1(P;C; Y )

r3 : conference (P; f1(P;L)) :� v2(P;L)

r4 : year (P; f2(P;L)) :� v2(P;L)

r5 : location (f1(P;L); f2(P;L); L) :� v2(P;L)

For example, rule r5 extracts from v2 that some conference in some year was held in location L.

Suppose that v1 stores the information that the paper \Bottom-Up Beats Top-Down for Datalog"

(abbreviated as datalog) was presented at PODS '89, and v2 stores the information that \Bottom-Up

Beats Top-Down for Datalog" was presented in Philadelphia. The inverse rules derive the following

facts:

conference

hdatalog; podsi (with r1)

hdatalog; f1(datalog; philadelphia)i (r3)

year

hdatalog; 1989i (r2)

hdatalog; f2(datalog; philadelphia)i (r4)

location

hf1(datalog; philadelphia); f2(datalog; philadelphia); philadelphiai (r5)

The inverse rules don't take into account the presence of the functional dependencies. For exam-

ple, because of the functional dependency Paper ! Conference in relation conference it is possible

to conclude that function term f1(datalog; philadelphia) must actually be the same as the constant

pods. We model this inference by introducing a new binary relation e. The intended meaning of e is

that e(c1; c2) holds if and only if c1 and c2 must be equal under the given functional dependencies.

Hence, the extension of e includes the extension of = (i.e., for every X, e(X;X)), and the tuples that

can be derived by the following chase rules (e( �A; �A
0
) is a shorthand for e(A1; A

0
1); : : : ; e(An; A

0
n)):

4

De�nition 2.4.1 (chase rules) Let �A! B be a functional dependency satis�ed by a world relation

p. Let �C be the attributes of p that are not in �A;B. The chase rule corresponding to �A! B, denoted

chase( �A! B), is the following rule:

e(B;B0) :� p( �A;B; �C); p( �A
0
; B0; �C

0
); e( �A; �A

0
).

4We only require relation e to be re
exive for ease of exposition. For every rule r having a subgoal e(X;Y ) in its
body, we could add a modi�ed version of rule r with subgoal e(X;Y ) removed and X replaced by Y . The resulting

set of rules wouldn't require e to be re
exive.
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2

We denote by chase(�) the set of chase rules corresponding to the functional dependencies in �.

In our example, the chase rules are

e(C;C0) :� conference (P;C); conference (P 0; C0); e(P; P 0)

e(Y; Y 0) :� year (P; Y ); year (P 0; Y 0); e(P; P 0)

e(L;L0) :� location (C; Y; L); location (C0; Y 0; L0); e(C;C0); e(Y; Y 0)

The chase rules allow us to derive the following facts in relation e:

e

hf1(datalog; philadelphia); podsi

hf2(datalog; philadelphia); 1989i

The extension of e is re
exive by construction, and is symmetric because of the symmetry in the

chase rules. To guarantee that e is an equivalence relation, it is still needed to enforce transitivity

of e. The following rule, denoted by T , is su�cient for guaranteeing transitivity of relation e:

e(X;Y ) :� e(X;Z); e(Z; Y ).

The �nal step in the construction is to rewrite query Q in a way that it can use the equivalences

derived in relation e. We de�ne the recti�ed query �Q by modifying Q iteratively as follows:

1. If c is a constant in one of the subgoals of Q, we replace it by a new variable Z, and add the

subgoal e(Z; c).

2. If X is a variable in the head of Q, we replace X in the body of Q by a new variable X0, and

add the subgoal e(X0; X).

3. If a variable Y that is not in the head of Q appears in two subgoals of Q, we replace one of

its occurrences by Y 0, and add the subgoal e(Y 0; Y ).

We apply the above steps until no additional changes can be made to the query. In our example

query Q would be rewritten to

�q (L) :� location (C; Y; L0); e(C; pods); e(Y; 1989); e(L0; L)

Note that evaluating query �Q on the reconstructed world relations and the derived equivalence

relation e yields the desired result: PODS '89 was held in Philadelphia.

Given a query Q, a set of source descriptions V, and a set of functional dependencies �, the con-

structed query plan includes �Q, the inverse rules V�1, the chase rules chase(�) and the transitivity

rule T . The following theorem shows that this query plan is maximally-contained in Q relative to

�.
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Theorem 2.4.1 Let � be a set of functional dependencies, V a set of conjunctive source de-

scriptions, and let Q be a datalog query over the world relations. Let R denote the set of rules

V�1[chase(�)[T . Then, ( �Q;R)# is maximally-contained in Q relative to �. Furthermore, ( �Q;R)

can be constructed in time polynomial in the size of Q, V, and �. 2

Proof. The key to the proof is to show that for every conjunctive query plan P �� Q,

P �� ( �Q;R). Because recursive query plans can be seen as an encoding of the union of in�nitely

many conjunctive query plans, it su�ces to prove the claim for all conjunctive query plans. We

prove the following statement by induction on k: if Q is a query, P is a conjunctive query plan, and

e1; : : : ; ek is a sequence of queries with e1 = Pexp, ek � Q, and ei+1 results from ei by applying a

chase step, then P �� ( �Q;R). This statement would prove that ( �Q;R) is maximally-contained in

Q relative to �.

For k = 1, Pexp is contained in Q. As shown in Theorem 2.3.1, it follows that P is contained in

(Q;V�1). It follows that P is contained in ( �Q;R) relative to �.

For the induction step, let k > 1 and assume ek�1 6� Q. Let �A! B be the functional dependency

that holds for relation p and that is applied from ek�1 to ek. Then ek�1 contains two subgoals of p,

g1 and g2, with the same values/variables for the attributes in �A, and g1 contains a variable X for

attribute B that is replaced by some value/variable in ek. Let h be the containment mapping [6]

that shows that Q contains ek. Replace every value/variable Xi in an argument position in Q

that is mapped by h to an argument position in ek that used to be variable X in ek�1 by a new

variable X0
i. For each of the new variables X0

i, add two subgoals of p to Q with the identical

new variables for the corresponding attributes �A, Xi and X
0
i for attribute B respectively, and new

variables for the remaining attributes. We can now �nd a containment mapping from query Q0 to

query ek�1. This mapping shows that ek�1 is contained in Q0. Therefore, Pexp � e1; : : : ; ek�1 is a

chase sequence with ek�1 � Q0. By the induction hypothesis we have that P � ( �Q0;R)exp. Using

the chase rule chase( �A ! B), the transitivity rule, and the re
exivity of relation e, we can show

that ( �Q0;R) � ( �Q;R). It follows that P �� ( �Q;R).

Query �Q contains all subgoals in Q, and at most as many additional subgoals of e as the sum

of all arities of the subgoals in Q. Also, there are as many inverse rules as there are subgoals in all

view de�nitions in V together. Finally, there are exactly as many chase rules as there are functional

dependencies in �. We can conclude that ( �Q;R) can be constructed in time polynomial in the size

of Q, V and �. 2 2

Example 2.4.1 The following is the query plan for the running example that results from the

construction described in this section. It consists of the recti�ed user query, the chase rules, the

transitivity rule, and the inverse rules. Relation e is assumed to be re
exive.

�q (L) :� location (C; Y; L0); e(C; pods); e(Y; 1989); e(L0; L)

e(C;C0) :� conference (P;C); conference (P 0; C0); e(P; P 0)

e(Y; Y 0) :� year (P; Y ); year (P 0; Y 0); e(P; P 0)

e(L;L0) :� location (C; Y; L); location (C0; Y 0; L0); e(C;C0); e(Y; Y 0)

e(X;Y ) :� e(X;Z); e(Z; Y )
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conference (P;C) :� v1(P;C; Y )

year (P; Y ) :� v1(P;C; Y )

conference (P; f1(P;L)) :� v2(P;L)

year (P; f2(P;L)) :� v2(P;L)

location (f1(P;L); f2(P;L); L) :� v2(P;L)

If relation e cannot be assumed to be re
exive, for example because the query plan execution engine

doesn't allow to treat relation e di�erently from other IDB predicates, then the following rules must

be added to the above query plan:

e(C;C0) :� conference (P;C); conference (P;C0)

e(Y; Y 0) :� year (P; Y ); year (P; Y 0)

e(L;L0) :� location (C; Y; L); location (C; Y; L0)

e(L;L0) :� location (C; Y; L); location (C; Y 0; L0); e(Y; Y 0)

e(L;L0) :� location (C; Y; L); location (C0; Y; L0); e(C;C0)

Theorem 2.4.1 showed that all results produced by this query plan that do not contain any function

symbols are answers to the user query. Moreover, the result of every datalog query plan that is

guaranteed to produce only answers to the user query is contained in the result of the above query

plan. In Section 2.7 we will show how to eliminate the function symbols from this query plan. The

resulting datalog query plan is maximally-contained in the user query. 2

We showed that recursive query plans are expressive enough to extract the maximal amount

of information from the information sources even in the presence of functional dependencies. Still,

one might ask whether it is somehow possible to do without recursion in the plans. The following

example shows that recursion is really needed in order not to miss any answers.

Example 2.4.2 Suppose we have the following world relation

schedule(Airline,Flight no,Date,Pilot,Aircraft)

which represents the pilot that is scheduled for a certain 
ight, and the aircraft that is used for this


ight. The functional dependencies that we consider for this example are

Pilot ! Airline and

Aircraft ! Airline

expressing that pilots work for only one airline, and that there is no joint ownership of aircraft

between airlines. The following information source is available:

v3(D;P;C) :� schedule (A;N;D; P;C)

v3 records on which date which pilot 
ies which aircraft. Assume a user asks for pilots that work

for the same airline as Mike:

q(P ) :� schedule (A;N;D;mike; C); schedule (A;N 0; D0; P; C0)
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Source v3 doesn't record the airlines that pilots work for. Nonetheless, using the functional depen-

dencies of relation schedule, conclusions can be drawn about which pilots work for the same airline

as Mike. For example, if both Mike and Ann are known to have 
own aircraft #111, then Ann works

for the same airline as Mike because of the functional dependency Aircraft ! Airline. Moreover,

if Ann is known to have 
own aircraft #222, and John has 
own aircraft #222 as well, then John

works also for the same airline as Mike. This time, both functional dependencies were used to draw

this conclusion. In general, the query plan Pn given by

qn(P ) :� v3(D1;mike; C1); v3(D2; P2; C1); v3(D3; P2; C2); v3(D4; P3; C2); : : : ;

v3(D2n�2; Pn; Cn�1); v3(D2n�1; Pn; Cn); v3(D2n; P; Cn)

is contained in the user query for each n. Moreover, each Pn is not contained in any shorter query

plan. Therefore, any query plan with a �xed number of subgoals cannot be maximally-contained in

the user query. 2

2.5 Full generalized dependencies

In this section we generalize the algorithm of the previous section to arbitrary full generalized

dependencies. The added expressive power of full generalized dependencies allows us, for example,

to express constraints between di�erent relations. As an example, assume that United Airlines as a

rule always uses one speci�c aircraft for every connection, in both directions. This can be expressed

by the following full generalized dependencies:

schedule (ua;N;D; P;C)^ schedule (ua;N;D0; P 0; C0) ) C = C0


ight (ua;N; F; T )^ 
ight (ua;N 0; T; F ) ^

schedule (ua;N;D; P;C)^ schedule (ua;N 0; D0; P 0; C0) ) C = C0

The �rst full generalized dependency expresses that United Airlines operates only one aircraft for

every 
ight number. The second full generalized dependency states that the aircraft used in both

directions are the same.

The key to generalizing our algorithm is to de�ne chase rules for these more general dependencies.

Let � be a full generalized dependency. The recti�ed full generalized dependency �� can be obtained

from � by rectifying the antecedent of its implication using the same procedure as for rectifying

queries presented in Section 2.4. For example, the recti�ed version of �rst the full generalized

dependency above is the following full generalized dependency:

schedule (A;N;D; P;C)^ schedule (A0; N 0; D0; P 0; C0) ^

A = ua ^A0 = ua ^N = N 0 ) C = C0

For every full generalized dependency there is an equivalent recti�ed full generalized dependency.

Therefore, it su�ces to de�ne generalized chase rules for recti�ed full generalized dependencies only.

De�nition 2.5.1 (generalized chase rules) Let
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8 �X [ p1( �X1) ^ : : :^ pn�1( �Xn�1) ) pn( �Xn) ]

be a recti�ed full generalized dependency, where p1; : : : ; pn are either world relations or equality

assertions. The generalized chase rule corresponding to this full generalized dependency is the

following rule:

�pn(Xn) :� �p1( �X1); : : : ; �pn�1( �Xn�1).

If pi is a world relation, then �pi is pi. Otherwise, pi is an equality assertion Yi = Zi, and �pi is de�ned

to be e(Yi; Zi). 2

We denote by chase(�) the set of generalized chase rules corresponding to the full general-

ized dependencies in �. The generalized chase rule corresponding to the recti�ed full generalized

dependency mentioned above is the following rule:

e(C;C0) :� schedule (A;N;D; P;C); schedule (A0; N 0; D0; P 0; C0);

e(A; ua); e(A0; ua); e(N;N 0)

Note that for functional dependencies, generalized chase rules are identical to the corresponding

chase rules de�ned in Section 2.4. To generate a maximally-contained plan in the presence of full

generalized dependencies, we follow the same algorithm as in Section 2.4, except that we replace the

chase rules by the generalized chase rules. The following theorem generalizes Theorem 2.4.1.

Theorem 2.5.1 Let � be a set of full generalized dependencies, V a set of conjunctive source

descriptions, and let Q be a query over the world relations. Let R denote the set of rules V�1 [

chase(�) [ T . Then, ( �Q;R)# is maximally-contained in Q relative to �. Furthermore, ( �Q;R) can

be constructed in time polynomial in the size of Q, V, and �. 2

The dependencies that we consider in this chapter are called full generalized dependencies because

all the variables that appear on the right hand side of the implication in a dependency must already

occur on the left hand side. This restrictions is essential. The following dependency is not a full

generalized dependency:


ight (A;N; F; T ) ) 9N 0 
ight (A;N 0; T; F )

This kind of dependency is usually refered to as an inclusion dependency because it asserts that the

set of values appearing for some attribute is included in the set of values appearing for some other

attribute. The dependency expresses that if an airline o�ers a 
ight between two cities, then the

airline o�ers the 
ight in both directions. If we allowed this kind of dependency, the corresponding

chase rule would be


ight (A; f(A;N; F; T ); T; F ) :� 
ight (A;N; F; T ).

But this rule is recursive and introduces new function terms. Therefore, naive bottom-up evaluation

of a query containing this rule wouldn't terminate. The question of whether it is possible to build

the maximally-contained query plan in the presence of general | including nonfull | dependencies

remains open.
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2.6 Limitations on binding patterns

The last case we consider in this chapter is the presence of limitations on access to information

sources. In practice, some information sources cannot answer arbitrary atomic queries on the re-

lation they store. In particular, the information source may require that some of the arguments

of its relations be given as input. To model source capabilities, we attach to each source relation

an adornment (see [51], Chap. 12), specifying which binding patterns the source supports.5 An

adornment of a view de�nition of v is a string of b's and f 's of length n, where n is the arity of

v. The meaning of the adornment is that the source only supports queries in which the arguments

with b adornments are bound. The other arguments may be either bound or free. For example,

the adornment vbf means that the �rst argument must be bound in queries on v. We de�ne an

executable query plan as follows.

De�nition 2.6.1 (executable query plan) Let V be a set of source descriptions with binding

adornments, and let P be the following conjunctive query plan:

q( �X) :� v1( �X1); : : : ; vn( �Xn)

Query plan P is executable if the following holds for i = 1; : : : ; n: let j be an argument position of

vi that has a b adornment, and let � be the j'th element in �Xi. Then, either � is a constant, or �

appears in �X1 [ : : :[ �Xi�1. 2

A datalog query plan includes source relations and IDB relations, which we model as having the

all-free adornment (i.e., fn, where n is the relation's arity). A query plan P is executable if for every

rule r 2 P, r is executable.

In [44] it is shown that the number of literals in a query plan that is equivalent to the user

query is bounded. However, as the following example, adapted from [34] shows, when sources have

limitations on binding patterns, there may not be a �nite maximally-contained query plan, if we

restrict ourselves to query plans without recursion.

Example 2.6.1 Consider the following sources:

v
f
1
(X) :� podsPapers(X)

v
bf
2
(X;Y ) :� cites(X;Y )

vb3(X) :� awardPaper(X)

The �rst source stores PODS papers, the second is a citation database, but only accepts queries

where the �rst argument is bound, and the third source will tell us whether a given paper won an

award. Suppose our query is to �nd all the award papers:

q(X) :� awardPaper(X)

For each n, the following is an executable conjunctive query plan Pn that is contained in Q:

5For simplicity of exposition, we assume that each source relation has a single adornment.
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qn(Zn) :� v1(Z0); v2(Z0; Z1); : : : ; v2(Zn�1; Zn); v3(Zn):

Furthermore, for each n, Pn may produce answers that are not obtained by any other Pi, for any

i. Intuitively, a paper will be in the answer to Pi if the number of links that need to be followed

from a PODS paper is i. Therefore, there is no bound on the size of the conjunctive queries in the

maximally-contained plan.

We now show that by allowing recursive plans we can produce a maximally-contained query plan.

On our example, the construction will yield the following query plan. The construction is based on

inventing a new recursively-de�ned relation, papers, whose extension will be the set of all papers

that can be reached from the papers in v1.

papers(X) :� v
f
1
(X)

papers(X) :� papers(Y ); v
bf
2
(Y;X)

q(X) :� papers(X); vb
3
(X).

2

We now describe the construction for a given set of adorned source relations V and a query Q.

The recursive plan includes a unary relation dom whose intended extension is the set of all constants

that appear in the query or in the view de�nitions, or that can be obtained by iteratively querying

the sources. The rules involving dom are the following.

De�nition 2.6.2 (domain rules) Let v 2 V be a source relation of arity n. Suppose the adornment

of v says that the arguments in positions 1; : : : ; l need to be bound, and the arguments l + 1; : : : ; n

can be free. Then for i = l + 1; : : : ; n, the following rule is a domain rule:

dom(Xi) :� dom(X1); : : : ; dom(Xl); v(X1; : : : ; Xn).

Also, if c is a constant appearing in the view de�nitions in V or in query Q, then the fact dom(c) is

a domain rule. 2

We denote by domain(V;Q) the set of rules described above for de�ning the predicate dom.

Notice that all domain rules are executable, and that relation dom has adornment f . Every query

plan P can be transformed to an executable query plan by inserting the literal dom(X) before

subgoals g in P that have a variable X in an argument position that is required to be bound, and X

does not appear in the subgoals to the left of g in the body. The resulting query plan, denoted by

Pexec, is executable. Moreover, we can show that Pexec is equivalent to P. Combining this result

with the one of the previous section, we can conclude with the following theorem:

Theorem 2.6.1 Let � be a set of full generalized dependencies, V a set of conjunctive source

descriptions with binding adornments, and let Q be a query over the global relations. Then �Q [

chase(�) [ T [ domain(V;Q) [ (V�1)exec is maximally-contained in Q relative to �. 2

Finally, we note that the query plan can be constructed in time polynomial in the size of Q, V

and �.
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2.7 Eliminating function symbols

Although in Section 2.3 we demonstrated an e�cient procedure to answer a datalog query as well

as possible given only source relations, it is desirable to transform the constructed logic query

to a datalog query that represents this answer. Indeed, we are looking for a datalog query that

is equivalent to (Q�;V�1) #. The key observation underlying the construction of such a datalog

query is that there are only �nitely many function symbols in (Q�;V�1). Because nested function

expressions can never be generated using bottom-up evaluation, it is possible, with a little bit of

bureaucracy, to keep track of function terms produced by (Q�;V�1) without actually generating

tuples containing function terms.

The transformation proceeds in a bottom-up fashion, starting with the inverse rules. Function

terms like f(X1; : : : ; Xk) in the IDB predicates of V�1 are eliminated by replacing them by the list of

variables X1; : : : ; Xk that occur in them. The IDB predicate names need to be annotated to indicate

that X1; : : : ; Xk belonged to the function term f(X1; : : : ; Xk). For instance, in Example 2.3.2 the

rule

edge(X; f(X;Y )) :� v(X;Y )

is replaced by the rule

edgeh?;f(?;?)i(X;X; Y ) :� v(X;Y )

The annotation h?; f(?; ?)i represents the fact that the �rst argument in edgeh?;f(?;?)i is identical to

the �rst argument in edge, and that the second and third argument in edgeh?;f(?;?)i combine to a

function term with the function symbol f as the second argument of edge. If bottom-up evaluation

of (Q�;V�1) can yield a function term for an argument of an IDB predicate in Q�, then a new

rule is added with correspondingly expanded and annotated predicates. The following de�nition

states this construction formally. �X is a shorthand for a list of variables or constants, and h��i is a

shorthand for an adornment. �X[i] and ��[i] stand for the ith position in �X and �� respectively.

De�nition 2.7.1 (predicate splitting) Let P be a query plan with function symbols. We are

going to de�ne a query plan Psplit that encodes exactly the derivations in P, but doesn't contain

function symbols. The transformation from P to Psplit is called predicate splitting, because an IDB

predicate in P might be represented by several IDB predicates in Psplit.

If

p(�1; : : : ; �n) :� v( �X)

is an inverse rule in P, then the query plan Psplit contains the rule

ph�1;:::;�ni(Y1; : : : ; Y
n) :� v( �X)

with 
0 = 0 and for i = 1; : : : ; n,

j�ij =

(
1 : if �i is a variable or a constant

arity of f : if �i is a function term with function symbol f;
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i = 
i�1 + j�ij,

�i =

8><
>:

? : if �i is a variable or a constant

f(?; : : : ; ?| {z }
j�ij

) : if �i is a function term with function symbol f;

and for ki = 1; : : : ; j�ij:

Y
i�1+ki =

(
�i : if �i is a variable or a constant

X : if �i is a function term with X as its kth argument.

If

p( �X) :� p1( �X1); : : : ; pm( �Xm)

is a rule in P, and

1. the query plan Psplit contains rules that have p
h��1i
1

; : : : ; p
h��mi
m as heads,

2. if for some i; j; i0; j0, �Xj [i] is identical to �Xj0 [i
0], then ��j [i] = ��j0 [i

0], and

3. if for some i; j, �Xj[i] is a constant, then ��j [i] = ?,

then the query plan Psplit contains the rule

ph
��i( �Y ) :� p

h��1i
1

( �Y 1); : : : ; p
h��mi
m ( �Y m)

such that for all i, ��[i] = ��j [k] for some j; k with �X [i] = �Xj[k], and if a variable X that occurs at
�Xj[k] for some j; k occurs anywhere else, then the variables and constants that represent X in �Y j

are the same as the variables and constants that represent X in the other places. 2

The following example shows this transformation.

Example 2.7.1 The logic query from Example 2.3.2 is transformed to the following datalog query.

The lines indicate the stages in the generation of the datalog rules.

edgeh?;f(?;?)i(X;X; Y ) :� v(X;Y )

edgehf(?;?);?i(X;Y; Y ) :� v(X;Y )

qh?;f(?;?)i(X;Y1; Y2) :� edgeh?;f(?;?)i(X;Y1; Y2)

qhf(?;?);?i(X1; X2; Y ) :� edgehf(?;?);?i(X1; X2; Y )

qh?;?i(X;Y ) :� edgeh?;f(?;?)i(X;Z1; Z2); q
hf(?;?);?i(Z1; Z2; Y )

qhf(?;?);f(?;?)i(X1; X2; Y1; Y2) :� edgehf(?;?);?i(X1; X2; Z); q
h?;f(?;?)i(Z; Y1; Y2)
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qhf(?;?);?i(X1; X2; Y ) :� edgehf(?;?);?i(X1; X2; Z); q(Z; Y )

qh?;f(?;?)i(X;Y1; Y2) :� edgeh?;f(?;?)i(X;Z1; Z2); q
hf(?;?);f(?;?)i(Z1; Z2; Y1; Y2)

2

The generated datalog query shows explicitly in which arguments the original logic query was

able to produce function terms.

Some tuples with function symbols might never have been able to contribute to an answer without

function symbols. Using our exact bookkeeping of function symbols, we are able to eliminate the

derivations of these useless tuples. In the following we are going to present two optimizations.

De�ne a predicate p to be relevant if there is a path in the dependency graph from p to the query

predicate q. If a predicate p is not relevant, then no derivation of a tuple in the answer requires p.

Therefore, all rules for irrelevant predicates can be dropped without losing any answers.

Example 2.7.2 The dependency graph for the datalog query plan in Example 2.7.1 is shown in

Figure 2.1. There are no paths from predicates qh?;f(?;?)i and qhf(?;?);f(?;?)i to q. Therefore, these
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Figure 2.1: Dependency graph for the query plan in Example 2.7.1.

two predicates are irrelevant. The three rules de�ning the irrelevant predicates can be dropped. The

following is the resulting datalog query:

edgeh?;f(?;?)i(X;X; Y ) :� v(X;Y )

edgehf(?;?);?i(X;Y; Y ) :� v(X;Y )

qhf(?;?);?i(X1; X2; Y ) :� edgehf(?;?);?i(X1; X2; Y )

qhf(?;?);?i(X1; X2; Y ) :� edgehf(?;?);?i(X1; X2; Z); q(Z; Y )
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qh?;?i(X;Y ) :� edgeh?;f(?;?)i(X;Z1; Z2); q
hf(?;?);?i(Z1; Z2; Y )

2

The second optimization doesn't reduce the number of derivations, but is an easy way to save

unneccessary copying of data during the evaluation of the datalog program. If p is a predicate in a

datalog query that has only one rule, and the body of this rule has only one subgoal, then predicate

p can be eliminated from the query. For every rule having p as one of its subgoals, unify this subgoal

with the head of the rule of p, and replace the subgoal by the corresponding body of the rule of p.

Example 2.7.3 Predicates edgeh?;f(?;?)i and edgehf(?;?);?i in Example 2.7.1 have only one rule and

only one subgoal in the bodies of their rules, and can therefore be eliminated. The following is the

resulting datalog query:

qhf(?;?);?i(X;Y; Y ) :� v(X;Y )

qhf(?;?);?i(X;Z; Y ) :� v(X;Z); q(Z; Y )

q(X;Y ) :� v(X;Z); qhf(?;?);?i(X;Z; Y )

2

Because we keep track of function symbols in (Q�;V�1)split, we know that the resulting instance

of the query predicate q with the all \?" adornment is exactly the subset of the result of (Q�;V�1)

that does not contain function symbols. The following is therefore an immediate corollary of Theo-

rem 2.3.1.

Corollary 2.7.1 For every datalog query Q and every set of conjunctive source descriptions V over

the EDB predicates of Q, the query plan (Q�;V�1)split is maximally-contained in Q. Moreover, if

there exists a query plan that is equivalent to Q, then (Q�;V�1)split is equivalent to Q.

2.8 Comparison with other algorithms

In the following, we are going to compare the construction presented in this chapter with two other

algorithms for answering queries using views: the bucket algorithm [38, 39], and the uni�cation-

join algorithm [43]. Because these algorithms cannot handle recursive queries, dependencies, or

limitations on binding patterns, we will illustrate the di�erences between our construction and these

two algorithms using a nonrecursive example query without dependencies and without limitations

on binding patterns.

Example 2.8.1 Assume that three sources are available which are described by the following view

de�nitions:

v1(F; T ) :� 
ight (F; T;wn)

v2(F; T ) :� 
ight (F; T; ua)

v3(F; T;C) :� 
ight (F;Z;C); 
ight (Z; T;C)
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The �rst and second source store the pairs of cities between which Southwest Airlines (wn) and

United Airlines (ua) respectively o�er direct 
ights. The third source stores pairs of cities that are

connected by 
ights with one stop-over, together with the airlines that o�er these 
ights. As an

example query, assume a user wants to know the airlines that 
y from San Francisco to New York

with at most one stop-over:

q(C) :� 
ight (sfo; jfk; C) (�)

q(C) :� 
ight (sfo; Z; C); 
ight (Z; jfk; C) (�)

Using the construction in Section 2.3, the following maximally-contained logic query plan can be

obtained in polynomial time:


ight (F; T;wn) :� v1(F; T )


ight (F; T; ua) :� v2(F; T )


ight (F; g(F; T;C); C) :� v3(F; T;C) (*)


ight (g(F; T;C); T; C) :� v3(F; T;C) (*)

q(C) :� 
ight (sfo; jfk; C)

q(C) :� 
ight (sfo; Z; C); it 
ight (Z; jfk; C)

The transformation presented in Section 2.7 would remove the two rules marked with (*), and would

add the following rule:

q(C) :� v3(F; T;C)

2

2.8.1 Bucket algorithm

The bucket algorithm is the algorithm used for query planning in the Information Manifold system

[33,38,39]. For each subgoal pi in the user query, a \bucket" Bi is created. If vj is a view de�nition

containing a predicate r uni�able with pi, then vj� is inserted into Bi, where � is a most general

uni�er of pi and r preferring the variables in pi. For each conjunctive user query c separately,

the bucket algorithm constructs conjunctive query plans with the same head as c, and all possible

combinations of source relations taken from the buckets corresponding to the subgoals of c as bodies.

For each of these query plans, the algorithm checks whether it can add a constraint C to the body,

such that the expansion of the resulting query is contained in c. All conjunctive query plans that

pass this containment test, will be evaluated to �nd the answer to the user query.

Example 2.8.2 Applied to the query in Example 2.8.1, the bucket algorithm creates three buck-

ets B1, B2, and B3 for the three subgoals 
ight (sfo; jfk; C), 
ight (sfo; Z; C), and 
ight (Z; jfk; C)

respectively. The buckets are �lled as follows:

B1 B2 B3

v1(sfo; jfk ) v1(sfo; Z) v1(Z; jfk )



2.8. COMPARISON WITH OTHER ALGORITHMS 39

v2(sfo; jfk ) v2(sfo; Z) v2(Z; jfk )

v3(sfo; T1; C) v3(sfo; T2; C) v3(Z; T3; C)

v3(F1; jfk; C) v3(F2; Z; C) v3(F3; jfk; C)

For each of the four query plans

q(C) :� v1(sfo; jfk ) (1)

q(C) :� v2(sfo; jfk ) (2)

q(C) :� v3(sfo; T1; C)

q(C) :� v3(F1; jfk; C)

the algorithm checks whether, after adding some constraints, its expansion is contained in the

conjunctive user query (�). Further, the following sixteen query plans are checked to see whether,

after adding some constraints, their expansion is contained in the conjunctive user query (�):

q(C) :� v1(sfo; Z); v1(Z; jfk ) (3)

q(C) :� v1(sfo; Z); v2(Z; jfk )

q(C) :� v1(sfo; Z); v3(Z; T3; C) (4)

q(C) :� v1(sfo; Z); v3(F3; jfk; C) (5)

q(C) :� v2(sfo; Z); v1(Z; jfk )

q(C) :� v2(sfo; Z); v2(Z; jfk ) (6)

q(C) :� v2(sfo; Z); v3(Z; T3; C) (7)

q(C) :� v2(sfo; Z); v3(F3; jfk; C) (8)

q(C) :� v3(sfo; T2; C); v1(Z; jfk )

q(C) :� v3(sfo; T2; C); v2(Z; jfk )

q(C) :� v3(sfo; T2; C); v3(Z; T3; C) (9)

q(C) :� v3(sfo; T2; C); v3(F3; jfk; C) (10)

q(C) :� v3(F2; Z; C); v1(Z; jfk ) (11)

q(C) :� v3(F2; Z; C); v2(Z; jfk ) (12)

q(C) :� v3(F2; Z; C); v3(Z; T3; C) (13)

q(C) :� v3(F2; Z; C); v3(F3; jfk; C) (14)

For each numbered query plan, a constraint can be added to its body such that it passes the

containment test. For example, the constraint that needs to be added to query (1) is 00C = wn00,

and the constraint that needs to be added to query (10) is 00T2 = jfk00. 2

As the example shows, the bucket algorithm has to perform a lot of containment tests. This is quite

expensive, especially because testing containment of conjunctive queries is NP-complete.

2.8.2 Uni�cation-join algorithm

The �rst step of the uni�cation-join algorithm is the same as the �rst step of the construction given in

this chapter, namely the generation of inverse rules. However, whereas our construction transforms
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the original query together with the inverse rules into a query plan, the uni�cation-join algorithm

constructs a set of conjunctive query plans using the so-called uni�cation-join as a central step.

For each subgoal pi in the user query, a \label" Li is created. If r :� v is one of the inverse rules,

and r and pi are uni�able, then the pair (�#pi; v�) is inserted into Li provided that �#q does not

contain any function terms. Here, � is a most general uni�er of pi and r, and �#pi and �#q are the

restriction of � to the variables in pi and to the variables in the query predicate q respectively. The

uni�cation-join of two labels L1 and L2, denoted L1
u
1 L2, is de�ned as follows. If L1 contains a pair

(�1; t1) and L2 contains a pair (�2; t2), then L1
u
1 L2 contains the pair (�1�[�2�; (t1^ t2)�) where �

is a most general substitution such that �1�#�2 = �2�#�1, provided there is such a substitution �,

and provided �1�# q, �2�# q, and (t1^ t2)� do not contain any function terms. If (�; vi1 ^ : : :^ vin)

is in the uni�cation-join of all labels corresponding to the subgoals in one of the conjunctive user

queries, and this user query has head h, then the query plan with head h� and body vi1 ; : : : ; vin is

part of the result.

Example 2.8.3 Applied to the query in Example 2.8.1, the uni�cation-join algorithm generates

three labels corresponding to the three subgoals of the query, 
ight (sfo; jfk; C), 
ight (sfo; Z; C), and


ight (Z; jfk; C), respectively:

L1

(fC ! wng; v1(sfo; jfk ))

(fC ! uag; v2(sfo; jfk ))

L2

(fC ! wng; v1(sfo; Z))

(fC ! uag; v2(sfo; Z))

(fZ ! g(sfo; T; C)g; v3(sfo; T; C))

L3

(fC ! wng; v1(Z; jfk ))

(fC ! uag; v2(Z; sfo ))

(fZ ! g(F; jfk; C)g; v3(F; jfk; C))

The uni�cation-join of L2 and L3 is

L2
u
1 L3

(fC ! wng; v1(sfo; Z) ^ v1(Z; jfk ))

(fC ! uag; v2(sfo; Z) ^ v2(Z; jfk ))

(fZ ! g(sfo; jfk; C)g; v3(sfo; jfk; C)).

The labels corresponding to conjunctive queries (�) and (�) are L1 and L2
u
1 L3 respectively. The

conjunctive query plans that can be constructed from L1 and L2
u
1 L3 are:

q(wn) :� v1(sfo; jfk )

q(ua) :� v2(sfo; jfk )
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q(wn) :� v1(sfo; Z); v1(Z; jfk )

q(ua) :� v2(sfo; Z); v2(Z; jfk )

q(C) :� v3(sfo; jfk; C)

2

The uni�cation-join algorithm doesn't require any containment tests. However, it might generate

an exponential number of conjunctive queries in cases when our algorithm generates a small datalog

query. As an example, assume that there are k view de�nitions of the form

vi(X;Y ) :� p(X;Y ); pi(X;Y ) for i = 1; : : : ; k.

Given the user query

q(X0; Xn) :� p(X0; X1); p(X1; X2); : : : ; p(Xn�1; Xn)

the constructed maximally-contained datalog query is the following:

p(X;Y ) :� v1(X;Y )
...

p(X;Y ) :� vk(X;Y )

q(X0; Xn) :� p(X0; X1); p(X1; X2); : : : ; p(Xn�1; Xn)

Evaluating this datalog query requires k � 1 unions and n � 1 joins. On the other hand, the

uni�cation-join algorithm yields the following kn conjunctive query plans:

q(X0; Xn) :� vj1(X0; X1); vj2(X1; X2); vjn (Xn�1; Xn)

for all j1; : : : ; jn 2 f1; : : : ; kg.

Evaluating these conjunctive queries requires kn � 1 unions and (n� 1)kn joins.

2.9 Conclusions and related work

We introduced a novel approach to creating information gathering plans, that allows for recursive

plans. We have shown that recursive plans enable us to solve three open problems. We described

algorithms for obtaining a maximally-contained query plan in the case of recursive user queries, in

the presence of dependencies and in the presence of limitations on binding patterns. Our results are

also of practical importance because dependencies and limitations on binding patterns occur very

frequently in information sources in practice (e.g., the WWW).

Recursive information gathering plans have another important methodological advantage. Query

plans can be constructed by describing a set of inferences that the mediator needs to make in order

to obtain data from its sources. As a consequence, it is simpler to construct these plans, and we

believe that it is easier to extend our methods to other contexts.
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Previous work on this problem did not consider cases where the queries are recursive and where

full generalized dependencies exist in the world schema. The �rst theoretical investigations of the

problem concentrated on showing a bound on the size of the resulting query plan [37,44]. These

results establish the complexity of the rewriting problem, but yield only nondeterministic algorithms

for its solution. As stated above, the algorithms in [34,38] propose heuristics for searching the space

of candidate plans. Huyn [29] proposed \pseudo-equivalent" rewritings in the case that no equivalent

rewritings exist. These ideas were used in [43] to give an algorithm for rewriting conjunctive queries

given source relations described by view de�nitions.

The problem of �nding query plans in the presence of binding-pattern limitations is considered

in [44], but only an algorithm for �nding an equivalent plan is presented. Later, Kwok and Weld [34]

showed that if we restrict our plans to be unions of conjunctive queries, then there may not be a

�nite maximally-contained rewriting in the presence of binding-pattern limitations. More complex

query capabilities in sources are considered in [40]. Complex capabilities are modeled by the ability

of a source to answer a potentially in�nite number of conjunctive queries. Hence, [40] considered

how to answer queries given an in�nite number of conjunctive views de�nitions.

Several authors have considered the problem of rewriting queries using views for query optimiza-

tion [57,10,50]. In this context, one usually requires a query plan that is equivalent to the original

query. The algorithms described in [10,50] also explain how to combine the search for query plans

with a traditional System-R style query optimizer. Another use of rewriting queries using views is

explored in [1] for the purpose of deciding which cached answers can be used by a mediator. The

algorithms described in [1] are aimed at capturing frequently occurring cases which can be detected

e�ciently.



Chapter 3

Disjunctive Sources

We examine the query planning problem in data integration systems in the presence of sources that

contain disjunctive data. We show that datalog, the language of choice for representing query plans

in data integration systems, is not su�ciently expressive in this case. We prove that disjunctive

datalog with inequality, on the other hand, is su�ciently expressive by presenting a construction of

query plans that are guaranteed to extract all available information from disjunctive sources.

3.1 Introduction

We examine the query planning problem in data integration systems in the presence of sources that

contain disjunctive data. The query planning problem in such systems can be formally stated as the

problem of answering queries using views as described in Chapter 2. View de�nitions describe the

data stored by sources, and query planning requires rewriting a query into one that only uses these

views. In this chapter we are going to extend the algorithm for answering queries using conjunctive

views introduced in Section 2.3 so that it can handle disjunction in the view de�nitions as well.

Example 3.1.1 Assume a data source stores 
ight information. More precisely, the source stores

nonstop 
ights by United Airlines (ua) and Southwest Airlines (sw), and 
ights out of San Francisco

International Airport (sfo) with one stopover. The data stored by this source can be described as

being a view over a database with a relation 
ight that stores all nonstop 
ights. The view de�nition

that describes this source is the following:

v(ua,From,To) :� 
ight(ua,From,To)

v(sw,From,To) :� 
ight(sw,From,To)

v(Airline,sfo,To) :� 
ight(Airline,sfo,Stopover),


ight(Airline,Stopover,To)

A user might be interested in all cities that have nonstop 
ights to Seattle (sea):

Q: q(From) :� 
ight(Airline,From,sea)

43
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If hua,jfk,seai is a tuple stored by the data source, then there is clearly a nonstop 
ight from New

York (jfk) to Seattle. On the other hand, if the tuple hua,sfo,seai is stored by the data source then a

nonstop 
ight from San Francisco to Seattle does not necessarily exist. Indeed, this tuple might be

stored because there is a 
ight with one stopover from San Francisco to Seattle. The task of query

planning in data integration systems is to �nd a query plan, i.e. a query that only requires views,

that extracts as much information as possible from the available sources. All 
ights to Seattle stored

by the data source with the exception of 
ights departing from San Francisco International Airport

are nonstop 
ights. Therefore, the query plan is the following:

P: q(From) :� v(Airline,From,sea), From 6= sfo

Note that without the use of the inequality constraint \From 6= sfo" it wouldn't be possible to

guarantee that all cities returned by the query plan indeed have nonstop 
ights to Seattle. 2

In Chapter 2, we showed that the expressive power of datalog is both required and su�cient

to represent \good" query plans in data integration systems when view de�nitions are restricted to

be conjunctive. As we have seen in Example 3.1.1, the presence of disjunctive sources in addition

requires the use of inequality constraints in query plans. So far, there are no algorithms that

generate query plans with inequality constraints. But the di�erences between conjunctive sources and

disjunctive sources are much more extensive. We will see in Example 3.1.2 that the expressive power

of datalog, even with inequality, is insu�cient to represent query plans that extract all available

data from disjunctive sources.

Example 3.1.2 Assume that there are two data sources available which are described by the fol-

lowing view de�nitions:

v1(X) :� color(X; red)

v1(X) :� color(X; green)

v1(X) :� color(X; blue)

v2(X;Y ) :� edge(X;Y )

View v1 stores vertices that are colored red, green, or blue. View v2 stores pairs of vertices that are

connected by an edge. Assume a user wants to know whether there is a pair of vertices of the same

color that are connected by an edge:

Q: q(0yes0) :� edge(X;Y ); color(X;Z); color(Y; Z).

Consider the graphs G1, G2, and G3 in Figure 3.1. All of these graphs are not three-colorable, i.e. for

every possible coloring of the vertices with at most three colors, there will be one edge that connects

vertices with the same color. Therefore, every graph that contains G1, G2, or G3 as a subgraph

contains an edge that connects two vertices with the same color if the vertices in G1, G2, and G3 are

colored by at most three colors. Query plans P1, P2, and P3 output 'yes' exactly when the input

graph contains G1, G2, or G3 respectively as a subgraph and when the vertices in G1, G2, and G3

respectively are colored by at most three colors:
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G:2G:1 :3G

Figure 3.1: Examples of graphs that are not 3-colorable.

P1: q(0yes0) :� v1(X1); v1(X2); v1(X3); v1(Y ); v2(X1; X2); v2(X2; X3);

v2(X3; X1); v2(X1; Y ); v2(X2; Y ); v2(X3; Y )

P2: q(0yes0) :� v1(X1); v1(X2); v1(X3); v1(X4); v1(X5); v1(Y );

v2(X1; X2); v2(X2; X3); v2(X3; X4); v2(X4; X5); v2(X5; X1);

v2(X1; Y ): v2(X2; Y ); v2(X3; Y ); v2(X4; Y ); v2(X5; Y )

P3: q(0yes0) :� v1(X1); v1(X2); v1(X3); v1(X4); v1(X5); v1(X6); v1(X7);

v1(Y ); v2(X1; X2); v2(X2; X3); v2(X3; X4); v2(X4; X5);

v2(X5; X6); v2(X6; X7); v2(X7; X1); v2(X1; Y ): v2(X2; Y );

v2(X3; Y ); v2(X4; Y ); v2(X5; Y ); v2(X6; Y ); v2(X7; Y )

It follows that query plans P1, P2, and P3 are contained in query Q. More generally, every query

plan that checks that the input graph contains a not three-colorable subgraph, and that all the

vertices in the subgraph are colored by at most three colors, is contained in Q.

It is well known that deciding whether a graph is three-colorable is np-complete [31]. Because

the problem of evaluating a datalog program has polynomial data complexity [56], this shows that

there is no datalog query plan that contains all the query plans that are contained in Q. Intuitively,

the reason is that for every datalog query plan P that is contained in Q, an additional conjunctive

query that tests for one more not three-colorable graph can be added to create a query plan that is

still contained in Q, but that is not contained in P. 2

Example 3.1.2 showed that the expressive power of datalog is insu�cient to represent query

plans that extract all available data from disjunctive sources. In this chapter, we will present a

construction of query plans formulated in disjunctive datalog with inequality that do guarantee to

extract all data. Example 3.1.3 shows the query plan resulting from our construction when applied

to the query planning problem in Example 3.1.2.

Example 3.1.3 Let us continue Example 3.1.2. The disjunctive datalog query plan that contains

all query plans contained in query Q is the following:

P: q(0yes0) :� v2(X;Y ); c(X;Z); c(Y; Z)

c(X; red) _ c(X; green) _ c(X; blue) :� v1(X)
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2

3.2 Preliminaries

3.2.1 Disjunctive datalog

A disjunctive Horn rule is an expression of the form

p1( �X1) _ : : :_ pn( �Xn) :� r1( �Y1); : : : ; rm( �Ym) (�)

where p1; : : : ; pn, and r1; : : : ; rm are predicate names, and �X1, : : :, �Xn, �Y1, : : :, �Ym are tuples of

variables, constants, and function terms. The head of the rule is p1( �X1) _ : : : _ pn( �Xn), and its

body is r1( �X1), : : :, rm( �Xm). Every variable in the head of a rule must also occur in the body

of the rule. A disjunctive logic query is a set of disjunctive Horn rules, and a disjunctive datalog

query is a set of function-free disjunctive Horn rules. If the predicates that appear in the bodies

of the rules are allowed to contain the built-in inequality predicate (6=), then the query language

is called disjunctive datalog with inequality. Disjunctive Horn rules with inequality have to satisfy

the additional constraint that every variable in the body appears at least once in an uninterpreted

predicate. A positive query is a union of conjunctive queries with the same predicate as head. In

this chapter, view de�nitions, abbreviated as V, are sets of positive queries, and user queries are

formulated in datalog.

3.2.2 Semantics

Various semantics have been given to disjunctive datalog queries. The semantic that we are going to

present here is commonly known as cautious minimal model semantics [21]. As we will see, disjoint

datalog with inequality and cautious minimal model semantics is su�ciently expressive to represent

\good" query plans in the presence of disjunctive sources. We will formalize the notion of a \good"

query plan in section 3.3.

The input of a disjunctive datalog query Q consists of a database D storing instances of all EDB

predicates in Q. A modelM of a query Q and an input database D, denoted as M j= Q(D), is an

instance of the predicates in Q such that

1. M contains the input database D, and

2. whenever there is an instantiation � of a rule (�) in Q such that r1( �Y1)�, : : :, rm( �Ym)� are in

M, then pi( �Xi)� is in M for at least one i 2 f1; : : : ; ng.

We denote the instance of the query predicate q in a model M by Mq. The output of Q, denoted

Q(D), is the largest instance of the query predicate q that occurs in all models of Q and D, i.e.

Q(D) =
\

M :Mj=Q(D)

Mq:
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For the class of disjunctive queries that we are considering in this chapter, there is an e�cient |

although in the worst case co-np-complete | method to compute Q(D) using conditional tables

[30]. However, we are not going to present this evaluation technique here. A query Q0 is contained

in a query Q if, for all databases D, Q0(D) is contained in Q(D).

3.3 Maximal containment vs. certain answers

In this section we are looking more closely at the question of what makes a query plan a \good"

query plan. The most basic requirement on a query plan P is that it produces answers that are

asked for in the corresponding query Q { and nothing else, i.e. that the expansion of P is contained

in Q. Clearly, two query plans P1 and P2 can both satisfy this condition, and still P1 might be

better than P2 because it might be the case that P1 always produces more answers than P2, i.e. P2

is contained in P1. In Chapter 2, we therefore focused on the notion of maximally-contained query

plans.

De�nition 3.3.1 (maximal containment) Let L be the language for representing query plans.

Given a query Q and view de�nitions V, a maximally-contained query plan w.r.t. Q, V, and L,

denoted by maxQ;V;L, is a query plan that contains all query plans whose expansion is contained in

Q, i.e.

maxQ;V;L �
[

P2L :Pexp�Q

P:

2

Depending on the language used for query plans, maximally-contained query plans might not

be guaranteed to exist. For example, if query plans are restricted to be formulated in datalog,

then no maximally-contained query plan exists for the query and the view de�nitions in Example

3.1.2. The reason is that there is no (�nite) datalog query that is equivalent to the in�nite union of

conjunctive query plans whose expansion is contained in the user query. Maximally-contained query

plans can be found by adding expressive power to the language used to formulate query plans. As

seen in Example 3.1.3, moving from datalog to disjunctive datalog as the language for query plans

is su�cient to represent a maximally-contained query plan.

The notion of maximal containment depends on the concrete language chosen to represent query

plans. Indeed, it would be preferable to have a notion of a \good" query plan that is independent

from speci�c languages. The following de�nition gives such a characterization.

De�nition 3.3.2 (certain answers) Given a query Q and view de�nitions V, the function that

computes the set of certain answers w.r.t. Q and V, denoted by certQ;V , is the function that maps a

view instance to the tuples that are in all results of evaluating Q on databases consistent with the

view instance and the view de�nitions, i.e. for every instance I of the views,

certQ;V(I) =
\

D : I�V(D)

Q(D):
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2

Maximal containment is a syntactic, proof-theoretic notion. In order to prove that a query plan

P is maximally-contained in a query Q it is necessary to show that an arbitrarily chosen query

plan whose expansion is contained in Q is also contained in P. On the other hand, the concept of

computing certain answers is a semantic, model-theoretic notion. To prove that a function computes

all certain answers one has to consider every database that is consistent with the view instance and

the view de�nitions. As in the case of, for example, derivability of a �rst-order logic formula and its

validity, there is also a duality between a query plan being maximally-contained in a query and this

query plan computing exactly the certain answers. Theorem 3.3.1 formally states this duality.

Theorem 3.3.1 Let Q be a query, let V be a set of view de�nitions, and let L be a language such

that maxQ;V;L exists. Then certQ;V is contained in maxQ;V;L. Moreover, if L is monotone then

certQ;V is equivalent to maxQ;V;L.

Proof. Let I be an arbitrary view instance. We have to show that

\
D : I�V(D)

Q(D) �
[

P2L :Pexp�Q

P(I):

Let t be a tuple in
T
D : I�V(D)

Q(D). Consider the following query plan

P: q(t) :� v1(t11); : : : ; v1(t1k1); : : : ; vn(tn1); : : : ; vn(tnkn)

where t11; : : : ; t1k1; : : : ; tn1; : : : ; tnkn are the tuples in the view instance I. We know that for every

database D with I � V(D),

Pexp(D) = P(V(D)) = ftg � Q(D);

and for every database D with I 6� V(D),

Pexp(D) = P(V(D)) = fg � Q(D):

Therefore, Pexp � Q. It follows that t is also a tuple in
S
P2L :Pexp�Q P(I).

In order to show equivalence in the case of monotone L, let t be a tuple in
S
P2L :Pexp�Q P(I),

and let D be a database with I � V(D). There exists at least one query plan P with Pexp � Q and

t 2 P(I). Because of the monotonicity of P we can conclude that

P(I) � P(V(D)) = Pexp(D) � Q(D):

Therefore, tuple t is also in
T
D : I�V(D)

Q(D). 2

Theorem 3.3.1 shows that maximally-contained query plans compute exactly the certain answers

if the language representing query plans is monotone. The following example shows that maxQ;V;L

is not guaranteed to be contained in certQ;V if query plans are allowed to be nonmonotone.
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Example 3.3.1 Consider the following view de�nitions and view instances

V: v1(X) :� p(X) I: v1 = fag

v2(X) :� p(X) v2 = fa; bg

v2(X) :� r(X)

and the following query:

Q: q(X) :� r(X)

The expansion of the nonmonotone query plan

P: q(X) :� v2(X); :v1(X)

is contained in Q. Therefore, b 2 maxQ;V;L(I). On the other hand, b 62 certQ;V(I) because the

database D with p = fa; bg and r = fg satis�es I � V(D), and b 62 Q(D). Therefore, maxQ;V;L is

not contained in certQ;V . 2

3.4 Generalization of construction

In this section, we are going to generalize the construction from Section 2.3 so that it can produce

maximally-contained query plans in the presence of disjunctive sources. As we have seen in Example

3.1.2, datalog | and any other language with polynomial data complexity | is not su�ciently

expressive to represent maximally-contained query plans in this case. Our construction will therefore

produce query plans in a more expressive language, namely disjunctive datalog with inequality.

The central part of the construction of maximally-contained query plans is the generalization of

inverse rules, introduced in Section 2.3, to disjunctive inverse rules. Before we can proceed to this

de�nition, we have to de�ne some technical concepts. Let Q1[ : : :[Qn be a positive view de�nition

with

Q1: v( �X1) :� p11( �X11); : : : ; p1m1
( �X1m1

)

. . .

Qn: v( �Xn) :� pn1( �Xn1); : : : ; pnmn
( �Xnmn

).

We can assume without loss of generality that the sets of variables �X1; : : : ; �Xn are all mutually

disjoint. Given a tuple t in an instance of v, we have to determine which of the conjunctive queries

Q1; : : : ;Qn might have generated t. If there is a tuple t such that t can be generated by any of

the queries Qi1 ; : : : ;Qik, then these queries are called truly disjunctive. More formally, queries

Qi1 ; : : : ;Qik are called truly disjunctive if there is a substitution � such that �X i1� = �X i2� = : : : =
�X ik�. �Xi1� is a witness of Qi1 ; : : : ;Qik being truly disjunctive.

Let the arity of v be �, and let �1; : : : ; �� be new constants. A conjunction of inequalities '

involving only the new constants �1; : : : ; �� and the constants in �X1; : : : ; �Xn is called an attribute

constraint. A conjunctive query Qi satis�es an attribute constraint ' if all inequalities in ' hold

after replacing each �j in ' by the corresponding �X i[j]. If queries Qi1 ; : : : ;Qik are truly disjunctive
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with most general witness �W , and there is an attribute constraint ' satis�ed by �Xi1 ; : : : ;
�Xik , but

not satis�ed by any �Xj with j 2 f1; : : : ; ng� fi1; : : : ; ikg and �Xj uni�able with �W , then ' is called

an exclusion condition for Qi1 ; : : : ;Qik.

Example 3.4.1 Let us continue Example 3.1.1. The following is the positive view de�nition we

considered there with head variables renamed appropriately:

Q1: v(ua,F1,T1) :� 
ight(ua,F1,T1)

Q2: v(sw,F2,T2) :� 
ight(sw,F2,T2)

Q3: v(A3,sfo,T3) :� 
ight(A3,sfo,S), 
ight(A3,S,T3)

Here is a list of truly disjunctive queries together with their most general witness and their most

general exclusion condition:

Q1 hua,F1,T1i �2 6= sfo

Q2 hsw,F2,T2i �2 6= sfo

Q3 hA3,sfo,T3i �1 6= ua & �1 6= sw

Q1;Q3 hua,sfo,T1i true

Q2;Q3 hsw,sfo,T2i true

This list tells us that a tuple of the form hua,F,Ti, for example, with F 6= sfo must have been

generated by query Q1, and a tuple of the form hsw,sfo,Ti must have been generated by either query

Q2 or query Q3. 2

We are now able to de�ne the central concept of disjunctive inverse rules. Intuitively, disjunctive

inverse rules describe all the databases that are consistent with the view de�nitions given a speci�c

view instance.

De�nition 3.4.1 (Disjunctive inverse rules) Let

Q1: v( �X1) :� p11( �X11); : : : ; p1m1
( �X1m1

)

. . .

Qn: v( �Xn) :� pn1( �Xn1); : : : ; pnmn
( �Xnmn

)

be a positive view de�nition with disjoint sets of head variables �X1; : : : ; �Xn, and variablesX1; : : : ; Xs

in the bodies but not in �X1; : : : ; �Xn. Let f1; : : : ; fs be new function symbols. Then for every set

of truly disjunctive queries Qi1 ; : : : ;Qik with most general witness �W and most general exclusion

condition ', the following rules are disjunctive inverse rules:

pi1�1(
�X
0
i1�1

) _ : : :_ pik�k(
�X
0
ik�k

) :� v( �W ); '0

with �l 2 f1; : : : ;milg for l = 1; : : : ; k, and

�X
0
�
 [j] =

8><
>:

�W [j0] : if ( �X�
)[j] = �X�[j
0] for some j0

�X�
 [j] : if ( �X�
)[j] is a constant

f�( �W ) : if ( �X�
)[j] = X�
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for all �, 
, j. Condition '0 is generated from ' by replacing each constant �j in ' by the corre-

sponding variable or constant �W [j]. 2

We denote the set of disjunctive inverse rules of a set V of view de�nitions by V�1.

Example 3.4.2 The disjunctive inverse rules of the positive view de�nition in Example 3.4.1 are

the following rules:


ight(ua,F1,T1) :� v(ua,F1,T1), F1 6= sfo


ight(sw,F2,T2) :� v(sw,F2,T2), F2 6= sfo


ight(A3,sfo,f(A3; sfo; T3)) :� v(A3,sfo,T3), A3 6= ua, A3 6= sw


ight(A3,f(A3; sfo; T3),T3) :� v(A3,sfo,T3), A3 6= ua, A3 6= sw


ight(ua,sfo,T1) _ 
ight(ua,sfo,f(ua; sfo; T1)) :� v(ua,sfo,T1)


ight(ua,sfo,T1) _ 
ight(ua,f(ua; sfo; T1),T1) :� v(ua,sfo,T1)


ight(sw,sfo,T1) _ 
ight(sw,sfo,f(sw; sfo; T2)) :� v(sw,sfo,T2)


ight(sw,sfo,T1) _ 
ight(sw,f(sw; sfo; T2),T2) :� v(sw,sfo,T2)

2

In the following we will consider the query plan consisting of the rules of a datalog query Q

together with the disjunctive inverse rules V�1. Disjunctive inverse rules contain function symbols.

Therefore, the output of a query plan Q [ V�1 can contain tuples with function symbols. Given a

query plan P and an instance I, let us denote by P (I) # the subset of P(I) that doesn't contain

function symbols. As shown in 2.7 for datalog query plans, it is possible to transform a query plan

of the form Q [ V�1 into a datalog query plan, denoted as (Q [ V�1) #, that computes only the

tuples without function symbols, i.e.

(Q[ V�1)(I)# = (Q[ V�1)# (I)

for all instances I. This transformation can easily be generalized to disjunctive datalog query plans.

The following theorem shows that the query plan (Q [ V�1) # is guaranteed to be maximally-

contained in Q. The proof of the theorem crucially uses the duality between maximal containment

and certain answers discussed in Section 3.3.

Theorem 3.4.1 For every datalog query Q and every set of positive view de�nitions V, the disjunc-

tive datalog query plan (Q[ V�1)# is maximally-contained in Q.

Proof. Let I be a view instance. Because the Q part of query plan Q [ V�1 does not contain

any EDB predicates, and because all the predicates in the bodies of V�1 are EDB predicates, every

bottom-up evaluation ofQ[V�1 necessarily �rst has to evaluate V�1 before evaluatingQ. Therefore,

(Q[ V�1)(I) =
\

M :Mj=V�1(I)

Q(M):
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Since disjunctive datalog queries are monotone, it su�ces by Theorem 3.3.1 to show that

(
\

M :Mj=V�1 (I)

Q(M)

| {z }
A

) # =
\

D : I�V(D)

Q(D)

| {z }
B

:

Let M be a model of V�1 and I. By the construction of V�1 we know that I � V(M). Therefore,

B � A. Because B doesn't contain function symbols it follows that B � A#.

Let D be a database with I � V(D). Consider all the models of V�1 and V(D). One of these models

coincides with D with the only di�erence that some function symbols in the model are replaced by

constants in D. LetM be this model, and let t be a tuple without function symbols inMq. Because

datalog queries are monotone when constants in the input database are made equal, it follows that

Q(M)# � Q(D). Therefore, A# � B. 2

Theorem 3.4.2 For every datalog query Q and every set of positive view de�nitions V, the disjunc-

tive datalog query plan (Q[ V�1)# can be evaluated in co-np time (data complexity).

Proof. Let t be a tuple that is not in (Q [ V�1) # (I) for some instance I. Then there is some

modelM of V�1 and I such that t is not in Q(M). If I contains n tuples and the longest conjunct

in V has m literals, then there is a submodel M0 of M with at most n � m tuples that is still a

model of V�1. Because of the monotonicity of Q, t is also not in M0. Moreover, checking that M0

is a model of V�1, and that t is not in Q(M) can be done in polynomial time. 2

3.5 Conclusions and future work

We considered the problem of answering queries using views with positive view de�nitions. We

showed that datalog is not expressive enough to represent maximally-contained query plans in this

case. One the other hand, disjunctive datalog with inequality is expressive enough. We presented a

construction of maximally-contained query plans in this more expressive language.

The data complexity of evaluating disjunctive datalog queries with inequality in general is co-np-

complete. However, it seems like there are subcases that might allow polynomial time evaluation.

The following subcases are likely candidates: (i) Q has no projections, (ii) Q is conjunctive and V

has no projections, and (iii) all view de�nitions in V have at most two disjuncts. Future work needs

to be devoted to look more closely at these subcases.



Chapter 4

Complexity of Answering Queries

Using Views

We study the data complexity of the problem of computing certain answers given view de�nitions,

an instance of the views, and a query. We consider conjunctive queries, conjunctive queries with

inequality, positive queries, datalog, and �rst order queries as query and view de�nition languages.

We show that the choice between the assumption that views are complete and the assumption that

some tuples might be missing has a considerable impact on the complexity of the problem. Our

results imply that in many cases datalog query plans are not expressive enough to answer queries

using views in a best possible way.

4.1 Introduction

In Chapter 2 we showed that even for query languages as expressive as datalog it is easy to compute

query plans that extract as much information as possible from the views. We called these query

plans maximally-contained query plans. Here we examine whether it is possible to extend this result

to more expressive view de�nition languages than conjunctive queries, and to other query languages.

We show that any query language with polynomial data complexity, for example relational calculus,

datalog, or even datalog with well-founded negation, is not su�ciently expressive for maximally-

contained query plans in these more general cases. For example, a conjunctive query with a single

inequality constraint might require maximally-contained query-plans to have more than polynomial

data complexity.

We derive these strong negative results by determining the data complexity of the problem

whether a given tuple is a certain answer of a query given view de�nitions and instances of these

views. As language for view de�nitions and queries we examine conjunctive queries, conjunctive

queries with inequality, positive queries, datalog, and �rst order logic.

53
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4.2 Preliminaries

4.2.1 Queries and views

If the body of a conjunctive query is allowed to contain the inequality predicate (6=), then the query

is called a conjunctive query with inequality. Every variable in a query with inequality must occur

at least once in a relational predicate, i.e. in a predicate other than the inequality predicate. A

positive query is a union of conjunctive queries with the same head predicate. Finally, a �rst order

query is a query whose body is a �rst order formula. A materialized view, also called view instance,

is the stored result of a previously executed query. A query that corresponds to a view instance is

called view de�nition. In this chapter we will use the following abreviations:

Conjunctive queries or view de�nitions: CQ

Conjunctive queries or view de�nitions with inequality: CQ6=

Positive queries or view de�nitions: PQ

Datalog queries or view de�nitions: datalog

First order queries or view de�nitions: FO

4.2.2 Open and closed world assumption

Given view de�nitions V and an instance I of these views, we are interested in answering queries

on the underlying database D. Under the closed world assumption we can be sure that instance I

stores all the tuples that satisfy the view de�nitions in V, i.e. I = V(D). Under the open world

assumption, on the other hand, instance I might only store some of the tuples that satisfy the view

de�nitions in V, i.e. I � V(D). As we can see from the following example, in reasoning about

the underlying database it makes a di�erence whether we are using the closed or the open world

assumption.

Example 4.2.1 Consider the two view de�nitions

v1(X) :� p(X;Y )

v2(Y ) :� p(X;Y )

and assume that v1 stores the tuple hai and v2 stores the tuple hbi. Under the open world assumption

we only know that some p tuple has value a as its �rst component, and some (possibly di�erent)

p tuple has value b as its second component. Under the closed world assumption, however, we

can conclude that all p tuples have value a as their �rst component and value b as their second

component, i.e. p contains exactly the tuple ha; bi. 2

Given some view de�nitions, a corresponding instance of the views, and a query, the question

is which answers of the query can be guaranteed to be correct. As we have seen in Example 4.2.1,

this question has to be answered di�erently depending on whether we are assuming an open or a

closed world. The following de�nition formalizes the concept of a certain answer under these two

assumptions:



4.3. OPEN WORLD ASSUMPTION 55

De�nition 4.2.1 (certain answer) Let V be a set of view de�nitions, let I be an instance of the

views, and let Q be a query. A tuple t is a certain answer under the open world assumption if t is

an element of Q(D) for every database D with I � V(D). A tuple t is a certain answer under the

closed world assumption if t is an element of Q(D) for every database D with I = V(D). 2

We will be interested in the data complexity [56] of the problem of computing certain answers

under the open and the closed world assumption. Data complexity is the complexity of the problem

as a function of the size of the instance of the views. We will also refer to the query complexity of

the problem. Query complexity is the complexity of the problem as a functions of the size of the

view de�nitions V and the query Q. In the remaining of the chapter, when we discuss complexity,

we will always mean data complexity unless speci�ed otherwise.

An answer that is certain under the open world assumption is also a certain answer under the

closed world assumption, but not necessarily vice versa. In fact, we will show that computing certain

answers under the closed world assumption is harder than under the open world assumption. In

Section 4.3 we are going to examine the complexity of the problem of computing certain answers

under the open world assumption. Section 4.4 then establishes the complexity results for this problem

under the closed world assumption.

4.3 Open world assumption

Figure 4.1 gives an overview of the complexity of computing certain answers under the open world

assumption.

| query |
views CQ CQ6= PQ datalog FO

CQ PTIME co-NP PTIME PTIME undec.

CQ6= PTIME co-NP PTIME PTIME undec.
PQ co-NP co-NP co-NP co-NP undec.
datalog co-NP undec. co-NP undec. undec.
FO undec. undec. undec. undec. undec.

Figure 4.1: Complexity of computing certain answers under the open world assumption.

Under the open world assumption, the problem of computing certain answers is closely related to the

query containment problem. Therefore, decidability and undecidability results carry over in both

directions. As shown in Theorem 4.3.1, if the problems are decidable, then their query complexity

is the same.

Theorem 4.3.1 Let L1;L2 2 fCQ;CQ
6=; PQ; datalog; FOg be a view de�nition language and query

language respectively. Then the problem of computing certain answers under the open world assump-

tion of a query Q 2 L2 given view de�nitions V � L1 and instances of the views is decidable if and
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only if the containment problem of a query in L1 in a query in L2 is decidable. Moreover, if the prob-

lems are decidable then their query complexity is identical, and the data complexity of the problem

of computing certain answers under the open world assumption is at most this query complexity.

Proof. We establish the claim by giving reductions between the two problems. We start with a

reduction from the problem of computing certain answers under the open world assumption to the

query containment problem. Let V = fv1; : : : ; vkg � L1 be a set of view de�nitions, let Q 2 L2 be

a query, let I be an instance of the views, and let t be a tuple of the same arity as the head of Q.

Let Q0 be a query consisting of the rules of the de�nitions in V together with the rule

q0(t) :� v1(t11); : : : ; v1(t1n1); : : : ; vk(tk1); : : : ; vk(tknk)

where I is the instance v1 = ft11; : : : ; t1n1g, . . . , vk = ftk1; : : : ; tknkg. If L1 is CQ or CQ6=, then

the view de�nitions in V can be substituted in for the view literals in this new rule. The result is

a single conjunctive query. If L1 is PQ, datalog, or FO, then no substitution is necessary. In all

cases, Q0 is in L1. We are going to show that tuple t is a certain answer of Q given V and I if and

only if Q0 is contained in Q.

\)": Assume that t is a certain answer under the open world assumption. Let D be a database.

If I 6� V(D), then Q0(D) = fg, and therefore Q0(D) is trivially contained in Q(D). If I � V(D),

then Q0(D) = ftg and t 2 Q(D). Again, Q0(D) is contained in Q(D).

\(" Assume that Q0 is contained in Q. Let D be a database with I � V(D). Then Q0(D) = ftg,

and therefore t 2 Q(D). Hence, t is a certain answer.

The remaining part of the proof is a reduction from the query containment problem to the

problem of computing certain answers under the open world assumption. Let Q1 2 L1 and Q2 2 L2

be two queries. Let p be a new predicate. Consider as view de�nition the rules of Q1 and the

additional rule

v(c) :� q1(X); p(X)

together with the instance I with v = fhcig. Let the query Q be all the rules of Q2 together with

the following rule:

q(c) :� q2(X); p(X).

Again, if L1 or L2 are CQ or CQ6=, then the de�nition of v and query Q respectively can be

transformed into a conjunctive query. Therefore, v 2 L1 and Q 2 L2. We are going to show that

Q1 is contained in Q2 if and only if hci is a certain answer of Q given v and I.

\)": Suppose that hci is not a certain answer. Then there is a database D with I � v(D), and

Q(D) does not contain hci. It follows that Q1(D) contains a tuple that Q2(D) does not contain.

Therefore, Q1 is not contained in Q2.

\(": Assume that Q1 is not contained in Q2. Then there is a database D such that Q1(D)

contains a tuple t that is not contained in Q2(D). Database D can be assumed to have p(D) = ftg.

Then v(D) = I and Q(D) = fg. Therefore, hci is not a certain answer. 2

The previous theorem allows to conclude the query complexity of the problem of computing

certain answers under the open world assumption from the query complexity of the corresponding
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query containment problem. In order to get answers to the question whether maximally-contained

datalog query plans can exists, on the other hand, only data complexity results are helpful. Indeed,

query complexity results can be misleading. For example, the query complexity of the containment

of a conjunctive query in a datalog query is EXPTIME-complete, while the containment problem of a

conjunctive query in a conjunctive query with inequality is considerably easier, namely �p
2
-complete

[55]. In comparison, the data complexity of the problem of computing certain answers under the

open world assumption for conjunctive view de�nitions and datalog queries is polynomial, while

it is considerably harder, namely co-NP-complete, for conjunctive view de�nitions and conjunctive

queries with inequality.

4.3.1 Conjunctive view de�nitions

In this section we consider the complexity of the problem of computing certain answers under the

open world assumption in the case of conjunctive view de�nitions. We will consider queries of

di�erent expressive power.

Polynomial cases

The main tool for proving polynomial time bounds is the notion of maximally-contained query plans.

The relevant de�nitions can be found in Section 2.2.

Intuitively, a maximally-contained query plan is the best of all query plans in using the informa-

tion available from the view instances. We showed in Chapter 2 that it is easy to construct these

maximally-contained query plans in the case of conjunctive view de�nitions. Theorem 3.3.1 shows

that maximally-contained query plans compute exactly the certain answers under the open world

assumption.

As we have shown in Chapter 2, for all V � CQ and Q 2 datalog, corresponding maximally-

contained query plans can be constructed. Because the data complexity of evaluating datalog queries

is polynomial [56], it follows that the problem of computing certain answers under the open world

assumption can be done in polynomial time.

Corollary 4.3.1 For V � CQ and Q 2 datalog, the problem of computing certain answers under

the open world assumption can be done in polynomial time.

Inequality

Theorem 4.3.2 shows that adding inequality just to the view de�nition doesn't add any expressive

power. The certain answers are exactly the same as if the inequalities in the view de�nitions were

omitted. As a consequence, the maximally-contained datalog query plan constructed from the query

and the view de�nitions but disregarding the inequality constraints computes exactly the certain

answers. Therefore, the problem is polynomial. On the other hand, Theorem 4.3.3 shows that

adding inequality to queries does add expressive power. A single inequality in a conjunctive query,

even combined with purely conjunctive view de�nitions, su�ces to make the problem co-NP-hard.



58 CHAPTER 4. COMPLEXITY OF ANSWERING QUERIES USING VIEWS

Van der Meyden proved a similar result in [53], namely co-NP hardness for the case V � CQ< and

Q 2 CQ<. Our theorem strengthens this result to V � CQ and Q 2 CQ6=.

Theorem 4.3.2 Let V � CQ6= and Q 2 datalog. De�ne V� to be the same view de�nitions in V

but with the inequality constraints deleted. Then a tuple t is a certain answer under the open world

assumption given V, Q and an instance I of the views if and only if t is a certain answer under the

open world assumption given V�, Q and I.

Proof.

\)": Assume that t is a certain answer under the open world assumption given V, Q and I. Let

D be a database with I � V�(D). If also I � V(D), then it follows immediately that t is in Q(D).

Otherwise, there is a view de�nition v in V and a tuple s 2 I such that s 2 v�(D), but s 62 v(D).

Let C 6= C0 be an inequality constraint in v that disabled the derivation of s in v(D). Because we

can assume that s is in v(D0) for some database D0, at least one of C or C0 must be an existentially

quanti�ed variable X. Add tuples to D that correspond to the tuples that generate s in v�(D), but

with the constant that X binds to replaced by a new constant. These new tuples then satisfy the

inequality constraint C 6= C0. By repeating this process for every such inequality constraint C 6= C0

and every such tuple s, we arrive at a database D00 with I � V(D00). Because t is a certain answer

given V, it follows that t is in Q(D00). Therefore, there are tuples t1; : : : ; tk 2 D00 that derive t. If

any ti contains one of the new constants, replace it by the tuple t0i 2 D that it was originally derived

from. Because t doesn't contain any new constants, and because Q cannot test for inequality, it

follows that t is also derived from t01; : : : ; t
0
k. Hence t is in Q(D).

\(": Assume that t is a certain answer under the open world assumption given V�, Q and I.

Let D be a database with I � V(D). Because V is contained in V�, it follows that I � V�(D), and

therefore t is in Q(D). 2

The following theorem establishes that the data complexity of the problem of computing certain

answers can be non-polynomial (unless P = NP). This increased complexity is due to a single

inequality added in the query. The view de�nitions are purely conjunctive. By Theorem 3.3.1, we

know that maximally-contained query plans compute exactly the certain answers under the open

world assumption. Because evaluating datalog queries has polynomial data complexity [56], it follows

that in general there are no datalog query plans that are maximally-contained in a conjunctive query

with inequality.

Theorem 4.3.3 For V � CQ, Q 2 CQ6=, the problem of determining whether a tuple is a certain

answer under the open world assumption given an instance of the views is co-NP-hard.

Proof. Let ' be a 3CNF formula with variables x1; : : : ; xn and conjuncts c1; : : : ; cm. Consider

the conjunctive view de�nitions

v1(X;Y; Z) :� p(X;Y; Z)

v2(X) :� r(X;Y )

v3(Y ) :� p(X;Y; Z); r(X;Z)
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and the instance I of the views with

v1 = fhi; j; 1i j xi occurs in cjg [ fhi; j; 0i j �xi occurs in cjg

v2 = fh1i; : : : ; hnig

v3 = fh1i; : : : ; hmig

and the following query:

q(c) :� r(X;Y ); r(X;Y 0); Y 6= Y 0.

We are going to show that tuple hci is a certain answer under the open world assumption if and only

if formula ' is not satis�able. Because the problem of testing a 3CNF formula for satis�ability is

NP-complete [15], this implies the claim.

\)": Assume that ' is satis�able. Then there is an assignment � from x1; : : : ; xn to true and

false such that every conjunct of ' contains at least one variable xi with �(xi) = true or one

negated variable �xi with �(xi) = false. Consider the database D with

p = fhi; j; 1i j xi occurs in cjg [ fhi; j; 0i j �xi occurs in cjg

r = fhi; �(xi)i j i 2 f1; : : : ; ngg

Instance I is contained in V(D), and Q(D) doesn't derive hci. Therefore, hci is not a certain answer.

\(": Assume that hci is not a certain answer. Then there is a database D with I � V(D) such

that Q(D) is the empty set. It follows that for i = 1; : : : ; n, database D contains exactly one r

tuple hi; dii. Consider the assignment � with �(xi) = true if D contains the r tuple hi; 1i, and with

�(xi) = false otherwise. Let cj be one of the conjuncts. Because hji is contained in v3, there must

be a p tuple hi; j; dii and an r tuple hi; dii. If di = 1, then cj contains a variable xi with �(xi) = true.

If di = 0, then cj contains a negated variable �xi with �(xi) = false. Since � satis�es each cj , ' is

satis�able. 2

So far, we have only proved co-NP-hardness. The following theorem establishes that the problem

is indeed solvable in co-NP. Therefore, the problem of computing certain answers under the open

world assumption in co-NP-complete for V � CQ and Q 2 CQ6=. The theorem applies for the more

general case of positive view de�nitions with inequality (PQ6=), and datalog queries with inequality

(datalog 6=). For these cases it will therefore su�ce later in the chapter to prove co-NP-hardness in

order to establish co-NP-completeness.

Theorem 4.3.4 For V � PQ6=, Q 2 datalog 6=, the problem of determining whether a tuple is a

certain answer under the open or the closed world assumption given an instance of the views is in

co-NP.

Proof. We prove the claim �rst for the open world assumption. Assume that t is not a certain

answer. Then there is a database D with I � V(D) and t is not in Q(D). Let n be the total number

of tuples in I and let k be the maximal length of conjuncts in the view de�nitions. Each tuple in

I can be generated by at most k tuples in D. Therefore, there is a database D0 � D with at most

nk tuples such that still I � V(D0). Because t is not in Q(D) and Q is monotone, t is also not in
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Q(D0). It follows that there is a database D0 whose size is polynomially bounded in the size of I

and V such that I � V(D0), and t is not in Q(D0). Moreover, checking that I � V(D0) and that t is

not in Q(D0) can be done in polynomial time.

For the closed world assumption, the proof is essentially the same with I = V(D) in place of

I � V(D). 2

First order queries

We saw that adding recursion to positive queries leaves the data complexity of the problem of

computing certain answers under the open world assumption still polynomial. On the other hand,

adding negation to positive queries makes the problem undecidable, as the following theorem shows.

Theorem 4.3.5 For Q 2 FO, the problem of determining whether a tuple is a certain answer under

the open or the closed world assumption given a set of view de�nitions together with an instance of

the views is undecidable, even if the instance is empty.

Proof. Let �1 and �2 be �rst order formulas. Consider the query

q(c) :� �1 ) �2.

Clearly, hci is a certain answer if and only if �1 implies �2. As shown in [7,41], the implication

problem for functional and inclusion dependencies is undecidable. Because functional and inclusion

dependencies can be formulated in �rst order logic, this proves the claim. 2

4.3.2 Positive view de�nitions

In the previous section we proved that adding inequality to the query results in co-NP-completeness

of the problem of computing certain answers under the open world assumption. The following theo-

rem shows that allowing disjunction in view de�nitions has the same e�ect on the data complexity.

The same result was proved by van der Meyden in [54] while studying inde�nite databases. We

include the theorem for the sake of completeness. The proof is a formalization of the ideas presented

in Example 3.1.2.

Theorem 4.3.6 For V � PQ, Q 2 CQ the problem of determining whether a tuple is a certain

answer under the open world assumption given an instance of the views is co-NP-hard.

Proof. Let G = (V;E) be an arbitrary graph. Consider the view de�nitions

v1(X) :� color(X; red) _ color(X; green) _ color(X; blue)

v2(X;Y ) :� edge(X;Y )

and the instance I with v1 = V and v2 = E. We will show that the query

q(c) :� edge(X;Y ); color(X;Z); color(Y; Z)
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has the tuple hci as a certain answer if and only if graph G is not 3-colorable. Because testing

a graph's 3-colorability is NP-complete [31], this implies the claim. For every database D with

I � V(D), relation edge contains at least the edges from E, and relation color relates at least the

vertices in V to either red, green, or blue. It follows that the databases D with I � V(D) are all

the assignments of supersets of the vertex set V to colors such that the vertices in V are assigned

to red, green, or blue.

\)": Assume that hci is a certain answer of the query. It follows that for every assignment of

the vertices to red, green, and blue, there is an edge he1; e2i in E such that e1 and e2 are assigned to

the same color. Therefore, there is not a single assignment of vertices to the three colors red, green,

and blue such that all adjacent vertices are assigned to di�erent colors. Hence G is not 3-colorable.

\(": Assume G is not 3-colorable. Then for every assignment of supersets of the vertex set V

to red, green, and blue there is at least one edge he1; e2i such that e1 and e2 are assigned to the

same color. It follows that the query will produce hci for every database D with I � V(D), i.e. the

query has hci as a certain answer. 2

4.3.3 Datalog view de�nitions

Theorem 4.3.4 established that the problem can be solved in co-NP for V � PQ6= and Q 2 datalog 6=.

Here we examine the e�ect on the complexity of the problem of computing certain answers if we

allow datalog as view de�nition language. For positive queries, the problem stays in co-NP as was

shown by van der Meyden in [54]. However, theorems 4.3.7 and 4.3.8 respectively establish that the

problem becomes undecidable for conjunctive queries with inequality and datalog queries.

Inequality

In the case of conjunctive view de�nitions, adding inequality to the query increased the complexity

of the problem of computing certain answers under the open world assumption from polynomial

to co-NP. With datalog view de�nitions, adding inequality to the query raises the problem from

co-NP complexity to undecidability. In [53], van der Meyden showed undecidability for the case of

V � datalog and Q 2 PQ6=. The following theorem proves that the problem is already undecidable

for conjunctive queries with inequality.

Theorem 4.3.7 For V � datalog, Q 2 CQ6=, the problem of determining whether a tuple is a

certain answer under the open world assumption given an instance of the views is undecidable.

Proof. The proof is by reduction of the Post Correspondence Problem [42] to the problem in the

claim.

Let w1; : : : ; wn; w
0
1; : : : ; w

0
n be words over the alphabet fa; bg. Consider the following datalog

query that de�nes view v:

v(0; 0) :� s(e; e; f)

v(X;Y ) :� v(X0; Y0); s(X0; X1; �1); : : : ; s(Xk�1; X; �k);
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s(Y0; Y1; �1); : : : ; s(Yl�1; Y; �l)

where wi = �1 : : :�k and w
0
i = �1 : : :�l; one rule for each i 2 f1; : : : ; ng.

s(X;Y; Z) :� p(X;X; Y ); p(X;Y; Z)

and the following query:

q(c) :� p(X;Y; Z); p(X;Y; Z0); Z 6= Z0

Assume that the instance I of view v is fhe; eig. We will show that there exists a solution to the

instance of the Post Correspondence Problem given by the words w1, . . . , wn, w
0
1
, . . . , w0n if and

only if hci is not a certain answer under the open world assumption. The result then follows from

the undecidability of the Post Correspondence Problem [42].

\)": Assume that the instance of the Post Correspondence Problem given by the words w1,

. . . , wn, w
0
1
, . . . , w0n has a solution i1; : : : ; ik. Then wi1 : : :wik = w0i1 : : :w

0
ik

= 
1 : : : 
m for some

characters 
1; : : : ; 
m 2 fa; bg. Consider the database D with

2w’ w’1 1w’ 3w’

2w 1w 1w 3w

1

1 2 3 4 5 6 7 e e

b b a b a b b a

a b a b b a

f

0 2 3 54 6 7 e

b b
0 1 2 3 4 5 6 7 e

e
e6

5
4

3
2

10
0

v(D):

s(D):

p(D):

Figure 4.2: The instance of the Post Correspondence Problem given by the words

w1 = ba, w2 = b, w3 = bba, w01 = ab, w02 = bb, and w03 = ba has solution \2113"

because w2w1w1w3 = bbababba = w02w
0
1w

0
1w

0
3. The �gure shows a database D with

he; ei 2 v(D), but Q(D) = fg.

p(D) = fh0; 1; 
1i; : : : ; hm� 2;m� 1; 
m�1i; hm� 1; e; 
mi; he; e; fi,

h0; 0; 1i; : : : ; hm� 2;m� 2;m� 1i; hm� 1;m� 1; ei; he; e; eig.

Clearly, Q(D) = fg. Moreover, s(D) and v(D) can be computed to be the following:

s(D) = fh0; 1; 
1i; : : : ; hm� 2;m� 1; 
m�1i; hm� 1; e; 
mi; he; e; fig
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v(D) = fh0; 0i,

hjwi1j; jw
0
i1
ji,

hjwi1j+ jwi2j; jw
0
i1
j+ jw0i2ji, . . . ,

hjwi1j+ : : :+ jwik�1
j; jw0i1j+ : : :+ jw0ik�1

ji,

he; eig

Since I � v(D) and Q(D) = fg, it follows that hci is not a certain answer.

\(": Assume that hci is not a certain answer under the open world assumption. Then there is

a database D with I � v(D) such that Q(D) = fg. Because tuple he; ei is in v(D), there must be

constants c0; c1; : : : ; cm with c0 = 0 and cm = e and characters 
1; : : : ; 
m 2 fa; bg such that

hc0; c1; 
1i; hc1; c2; 
2i; : : : ; hcm�1; cm; 
mi 2 s(D). (*)

Let d0; d1; : : : ; dm0 be constants with d0 = 0 and �1; : : : ; �m0 2 fa; bg be characters such that

hd0; d1; �1i; hd1; d2; �2i; : : : ; hdm0�1; dm0 ; �m0i 2 s(D).

We are going to show by induction on m0 that for m0 � m, di = ci and �i = 
i for i = 0; : : : ;m0. The

claim is trivially true for m0 = 0. For the induction case, let m0 > 0. We know that hci�1; ci; 
ii 2

s(D) and hdi�1; di; �ii 2 s(D), and that ci�1 = di�1. By de�nition of s, this implies that the tuples

hci�1; ci�1; cii, hci�1; ci�1; dii, hci�1; ci; 
ii, and hci�1; di; �ii are all in p(D). Because Q(D) = fg, it

follows that di = ci and �i = 
i.

Assume for the sake of contradiction that m0 > m. Then there exists a tuple hdm; dm+1; 
m+1i 2

s(D), and therefore hdm; dm; dm+1i; hdm; dm+1; 
m+1i 2 p(D). Because he; e; fi 2 s(D), it follows

that he; e; ei; he; e; fi 2 p(D). Since dm = cm = e this implies that dm+1 = e and 
m+1 = f , which

contradicts the fact that 
m+1 2 fa; bg. Hence, m
0 = m.

We proved that there is exactly one chain of the form in (*). Because he; ei 2 v(D), there is a sequence

i1 : : : ik with i1; : : : ; ik 2 f1; : : : ; ng such that wi1 : : :wik = 
1 : : : 
m and w0i1 : : :w
0
ik

= 
1 : : : 
m.

Therefore, i1; : : : ; ik is a solution to the instance of the Post Correspondence Problem given by

w1; : : : ; wn; w
0
1; : : : ; w

0
n.

2

Theorem 4.3.7 has an interesting consequence for the containment problem of a recursive datalog

query in a nonrecursive datalog query with inequality. It shows that the technique in [11] to prove

decidability of the containment problem of a datalog query in a nonrecursive datalog query does not

carry to datalog with inequality. Indeed, it is an easy corollary of Theorems 4.3.1 and 4.3.7 that the

problem is undecidable.

Corollary 4.3.2 The containment problem of a datalog query (even without inequality) in a con-

junctive query with inequality is undecidable.

Datalog queries

As we saw, there is a close relationship between the problem of computing certain answers under

the open world assumption and query containment. Not surprisingly it is therefore the case that

the problem becomes undecidable for datalog view de�nitions and datalog queries.
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Theorem 4.3.8 For V � datalog, Q 2 datalog, the problem of determining whether a tuple is a

certain answer under the open world assumption given an instance of the views is undecidable.

Proof. The containment problem of a datalog query in another datalog query is undecidable [47].

Therefore, the claim follows directly from Theorem 4.3.1. 2

4.3.4 First order view de�nitions

Theorem 4.3.5 showed that adding negation in queries leads to undecidability. The following theorem

now shows that the same is true for adding negation to view de�nitions.

Theorem 4.3.9 For V 2 FO, Q 2 CQ, the problem of determining whether a tuple is a certain

answer under the open or the closed world assumption given an instance of the views is undecidable.

Proof. Let ' be a �rst order formula, and let p be a new predicate. Consider the view de�nition

v(c) :� '(X) _ p(X)

together with the instance I with v = fhcig and the query

q(c) :� p(X).

We will show that hci is a certain answer under the open or closed world assumption if and only

if formula ' is not satis�able. A formula ' is not satis�able if and only if the formula :' is a

tautology. Since by Church's Theorem [14] testing whether a �rst order formula is a tautology is

undecidable, this implies the claim.

\)": Suppose that ' is satis�able. Then there is a database D such that '(D) is satis�ed, and

such that p(D) is empty. For this database, I = v(D) and Q(D) = fg. Therefore, hci is not a certain

answer.

\(": Suppose that hci is not certain. Then there is a database D with I � V(D) (or with

I = V(D)) such that hci is not in Q(D). Since p(D) is empty, '(D) must be satis�ed. Therefore,

formula ' is satis�able. 2

4.4 Closed world assumption

Figure 4.3 gives an overview of the complexity of computing certain answers under the closed world

assumption. Computing certain answers under the closed world assumption is harder than computing

certain answers under the open world assumption. Whereas the problem is polynomial for V � CQ6=

and Q 2 datalog under the open world assumption, the problem is already co-NP-complete for

V � CQ and Q 2 CQ under the closed world assumption. Moreover, whereas the problem is

decidable for V � datalog and Q 2 PQ under the open world assumption, the problem is already

undecidable for V � datalog and Q 2 CQ under the closed world assumption.
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| query |
views CQ CQ6= PQ datalog FO

CQ co-NP co-NP co-NP co-NP undec.
CQ6= co-NP co-NP co-NP co-NP undec.
PQ co-NP co-NP co-NP co-NP undec.
datalog undec. undec. undec. undec. undec.
FO undec. undec. undec. undec. undec.

Figure 4.3: Complexity of computing certain answers under the closed world assump-

tion.

4.4.1 Conjunctive view de�nitions

As in Theorem 4.3.6, the proof is a reduction of the problem of 3-colorability of a graph to the

problem of computing certain answers.

Theorem 4.4.1 For V � CQ, Q 2 CQ, the problem of determining whether a tuple is a certain

answer under the closed world assumption given an instance of the views is co-NP-hard.

Proof. Let G = (V;E) be an arbitrary graph. Consider the view de�nitions

v1(X) :� color(X;Y )

v2(Y ) :� color(X;Y )

v3(X;Y ) :� edge(X;Y )

and the instance I with v1 = V , v2 = fred; green; blueg and v3 = E. We will show that under the

closed world assumption the query

q(c) :� edge(X;Y ); color(X;Z); color(Y; Z)

has the tuple hci as a certain answer if and only if graph G is not 3-colorable. Because testing

a graph's 3-colorability is NP-complete [31], this implies the claim. For every database D with

I = V(D), relation edge contains exactly the edges from E, and relation color relates all vertices in

V to either red, green, or blue.

\)": Assume that hci is a certain answer of the query. It follows that for every assignment of

the vertices to red, green, and blue, there is an edge he1; e2i in E such that e1 and e2 are assigned to

the same color. Therefore, there is not a single assignment of vertices to the three colors red, green,

and blue such that all adjacent vertices are assigned to di�erent colors. Hence G is not 3-colorable.

\(": Assume G is not 3-colorable. Then for every assignment of vertices in V to red, green,

and blue there is at least one edge he1; e2i such that e1 and e2 are assigned to the same color. It

follows that the query will produce hci for every database D with I = V(D), i.e. the query has hci

as a certain answer. 2

When we were studying the problem of computing certain answers under the open world assump-

tion in Section 4.3, we were able to conclude from a co-NP-hardness result that maximally-contained
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datalog query plans cannot exist in general. The same reasoning is not true under the closed world

assumption. Indeed, we know that for V � CQ and Q 2 CQ maximally-contained datalog query

plans do exist. By Theorem 3.3.1 we know that these maximally-contained query plans compute

exactly the certain answers under the open world assumption. These answers are also certain under

the closed world assumption, but there might be certain answers under the closed world assump-

tion that are not computed. The reason why maximally-contained datalog query plans are unable

to compute all certain answer under the closed world assumption is the monotonicity of datalog

queries. The following example illustrates this point.

Example 4.4.1 Consider the view de�nitions

v1(X) :� color(X;Y )

v2(Y ) :� color(X;Y )

v3(X;Y ) :� edge(X;Y )

and the query

q(c) :� edge(X;Y ); color(X;Z); color(Y; Z).

Assume that for this choice of V and Q there exists a query plan P that computes exactly the certain

answers under the closed world assumption. Then P outputs hci when applied to an instance I with

v1 = V , v2 = fc1; : : : ; ckg and v3 = E for some graph G = (V;E) exactly when G is not k-

colorable. Let G be a graph that is not 3-colorable, but that is 4-colorable. Then P outputs hci for

v2 = fc1; c2; c3g, but does not output hci for v2 = fc1; c2; c3; c4g. It follows that P is not monotone.

Therefore, P cannot be a datalog query plan. 2

4.4.2 Datalog view de�nitions

Theorem 4.4.2 For V � datalog, Q 2 CQ the problem of determining whether t is a certain

answer under the closed world assumption given an instance of the views is undecidable.

Proof. Let Q1 and Q2 be two datalog queries with answer predicate q1 and q2 respectively.

Consider the two recursive views

v1(c):� r(X)

v1(c):� q1(X); p(X)

v2(c):� q2(X); p(X)

where p and r are two relations not appearing in Q1 and Q2, and the instance I with v1 = fhcig

and v2 = fg. Assume the user query is

q(c) :� r(X).

If Q1 � Q2, then for every database D with V(D) = I,

q1(D) \ p(D) � q2(D) \ p(D) = v2(I) = fg.
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Therefore,

r(D) = v1(I) = fhcig,

i.e. hci is a certain answer under the closed world assumption.

On the other hand, if Q1 6� Q2, then there is a database D such that some tuple hbi is in Q1(D),

but not in Q2(D). By extending D such that p(D) = fhbig and r(D) = fg, we have that V(D) = I.

Because Q(D) = fg, hci is not a certain answer under the closed world assumption.

We established that hci is a certain answer under the closed world assumption if and only if Q1

is contained in Q2. The claim now follows from the undecidability of containment of datalog queries

[47]. 2

4.5 Conclusions and related work

We established the data complexity of the problem of computing certain answers given view de�-

nitions, view instances, and a query, both under the open and the closed world assumption. The

query and view de�nition languages we considered were conjunctive queries, conjunctive queries

with inequality, positive queries, datalog, and �rst order logic. In general, the problem is harder

under the closed than under the open world assumption. Under the open world assumption certain

answers in the conjunctive view de�nitions/datalog queries case can be computed in polynomial

time. Indeed, datalog queries that compute exactly the certain answers in this case can be easily

constructed as shown in Chapter 2 and [17]. On the other hand, already the conjunctive view de�ni-

tions/conjunctive queries case is co-NP-complete under the closed world assumption. But even under

the open world assumption, adding inequalities to the queries, or disjunction to the view de�nitions

makes the problem co-NP-hard. We were able to conclude that, unless P = NP, maximally-contained

query plans do not exist if these more expressive query and view de�nition languages are used.

The problem of computing certain answers under the open world assumption is closely related

to the problem of querying inde�nite databases. The complexity of this problem was studied by van

der Meyden in [53,54,55]. As we showed in this chapter, the query complexity of the problem of

computing certain answers under the open world assumption is identical to the query complexity

of the corresponding query containment problem. The containment problem for conjunctive queries

was proved to be NP-complete in [6]. Containment of datalog queries is known to be undecidable

[47], and the containment of a datalog query in a non-recursive datalog query was shown to be

2EXPTIME-complete [12].

The problem of answering queries using views has been studied intensively [37,10,17,5,57,44,40].

Its applications range from query optimization to information integration [52,20,16,19,39]. In [37],

the query complexity of the problem of answering queries using views was studied for the case of

conjunctive queries and conjunctive view de�nitions, possibly with built-in predicates.



Chapter 5

Query Optimization Using Local

Completeness

In this chapter we consider the problem of query plan optimization in information integration sys-

tems. It is unrealistic to assume that data stored by information sources is complete. Therefore,

current implementations of information integration systems query all possibly relevant information

sources in order not to miss any answers. This approach is very costly. We show how a weaker form

of completeness, local completeness, can be used to minimize the number of accesses to information

sources.

5.1 Introduction

We consider the problem of query plan optimization in information integration. The goal of infor-

mation integration is to provide the illusion that data stored by distributed information sources is

stored in a single \global" database. Users can pose queries in terms of the global database schema.

These queries then need to be translated into queries that can be answered by the information

sources. There are basically two approaches to information integration. Either the relations of the

global schema are de�ned in terms of the relations stored by the information sources (query-centric

approach), or the relations stored by the information sources are described in terms of the global

schema (source-centric approach).

The TSIMMIS project [13] investigates the query-centric approach to information integration.

Query planning is very e�cient using this approach, because user queries simply have to be matched

against query templates to �nd the corresponding prede�ned query plans. However, the query-

centric approach has two major disadvantages. The number of possible user queries is restricted,

and adding new information sources requires rewriting all related query templates.

The Information Manifold [33], Infomaster [28], Occam [34], Razor [26], and Emerac [35] follow

the more 
exible source-centric approach. This approach is very well suited for dynamic environ-

ments like the Internet, because adding, removing, or changing an information source only requires

68
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adding, removing, or changing the description of this respective information source. Because query

plans have to be computed at query time, e�cient query plan generation and optimization become

crucial.

While query plan generation in the source-centric approach has been studied extensively [37,

44, 38, 39, 17, 19, 20], little work has been done on query plan optimization. We show how local

completeness information as introduced in [22] and explained in the following can be used for query

plan optimization in the source-centric approach to information integration.

5.1.1 Local completeness

Information integration systems communicate with users in terms of a global schema consisting of

a set of world relations p1; p2; : : : ; pm. The system has access to a number of information sources.

We refer to these sources as IS1; : : : ; ISn. Each information source ISi is assumed to store a source

relation si. Ideally, a source relation would be a materialized view de�ned in terms of world relations.

This view then would concisely describe the data stored by the information source. However, this

requirement is seldom satis�able in real world applications.

Example 5.1.1 Assume an information integration system wants to integrate classi�ed ads from

several newspapers. One of the world relations then might be a relation

cars for sale(Manufacturer;Model; Y ear;Mileage; Price; Phone number)

representing information found in used car classi�eds. Because a speci�c used car classi�ed can

appear in any of the newspapers | the newspapers have overlapping markets | no newspaper

is \complete" on some part of the cars for sale relation. The best one can do in describing the

information sources is to state that the data they store is contained in the cars for sale relation. 2

Because frequently source relations do not correspond to materialized views in terms of the world

relations, implementations of information integration systems [33,28] consider the data stored by an

information source to be contained in the corresponding view. Using this interpretation, however, an

information integration system might be forced to retrieve much redundant information. If several

information sources store data that might be relevant to a user query, then all of these sources

need to be queried, although data stored by one information source might be completely stored by

another.

In some applications it is impossible to improve on this situation. If for example a user asks for

used red sports cars, then there is no way to tell which newspaper might provide matching classi�eds.

In many application domains, however, it is known that some subset of the data that an information

source stores is complete, although the entire data stored by the information source might not be

complete. This so called local completeness information can be used to minimize the number of

information sources that need to be queried. We represent an information source therefore by two

views: a conservative view vci as a lower bound of si, and a liberal view vli as an upper bound of si.

Conservative views describe the subsets of the data that are known to be complete, i.e. they encode

local completeness information.
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Conservative
View

Data stored by
Information Source

Liberal
View

Figure 5.1: The relationship between data stored by an information source and the

corresponding conservative and liberal views. Conservative views represent local com-

pleteness information.

Conservative and liberal views have the same schema as the corresponding source relations. If t

is a tuple belonging to the conservative view, then t is indeed stored by the information source. If

t is a tuple stored by the information source, then t also belongs to the liberal view. In the special

case that an information source indeed stores a materialized view in terms of world relations, the

corresponding conservative and liberal views are identical.

Example 5.1.2 Assume that the information integration system also wants to integrate sources

that provide information on the current market value of cars. The information integration system

might export a world relation like

bluebook(Manufacturer;Model; Y ear; V alue).

Assume an infomation source stores current market values for cars, and guarantees that it has all

information for models built after 1990. This information source can be descibed as follows:

vcinfo(Ma;Mo; Y e; V a) :� bluebook(Ma;Mo; Y e; V a); Y e > 1990

vlinfo(Ma;Mo; Y e; V a) :� bluebook(Ma;Mo; Y e; V a)

A second information source accessible by the information integration system might be a database

of the car manufacturer BMW. This database stores information on all BMW models, and nothing

else. The completeness of this database can be expressed by coinciding conservative and liberal

views:

v
c;l
bmw(bmw;Mo; Y e; V a) :� bluebook(bmw;Mo; Y e; V a)

If a user requests information on a car build after 1990 or built by BMW, then only information

source ISinfo or ISbmw respectively needs to be queried. On the other hand, if a user asks for all

cars with market value over $50; 000, then both information sources have to be queried in order not

to miss any answers. 2
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5.1.2 Semantical correctness

In the following, we are going to de�ne three important properties of query plans: semantical

correctness, source-completeness, and view-minimality. The notion of maximally-contained query

plans, as de�ned in Chapter 2, corresponds exactly to query plans that are semantically correct and

source-complete. We re�ne the notion of maximally-containment here for the ease of exposition. The

algorithms presented in [43,38,39,17,19] generate semantically correct and source-complete query

plans. We will show how these algorithms can be extended to also guarantee view-minimality.

The most basic requirement a query plan P must satisfy in order to qualify as an answer to a

user query Q is that every tuple reported to the user by executing P does satisfy Q. A query plan

P is semantically correct with respect to a user query Q, if P is contained in Q for all instances of

the source relations s1; : : : ; sn consistent with the given conservative and liberal views.

Example 5.1.3 Assume a user asks for used cars built in 1991 that are o�ered for sale below their

current market value:

q(Ma;Mo;Mi; Pr; Ph) :� cars for sale(Ma;Mo; 1991;Mi; Pr;Ph);

bluebook(Ma;Mo; 1991; V a); P r < V a

In addition to the two information sources in Example 5.1.2, the information integration system

might have access to the used car classi�eds of the San Francisco Chronicle and the San Jose

Mercury News. These two information sources don't guarantee any local completeness, and are

therefore only described by the following liberal views:

vlsfc(Ma;Mo; Y e;Mi; Pr; Ph) :� cars for sale(Ma;Mo; Y e;Mi; Pr; Ph)

vlsjmn(Ma;Mo; Y e;Mi; Pr; Ph) :� cars for sale(Ma;Mo; Y e;Mi; Pr; Ph)

The query plan

q1(Ma;Mo;Mi; Pr; Ph) :� ssfc(Ma;Mo; 1991;Mi; Pr;Ph);

sbmw(Ma;Mo; 1991; Va); P r < V a

is semantically correct with respect to Q. It is essential to add the selection on year and price range

in order for the query to be semantically correct. We assume that information sources have the

capability of equality selection. Therefore, the selection of used cars built in 1991 can be pushed to

the sources. However, the selection on the price range needs to be added as a post-processing step

in the information integration system. 2

5.1.3 Source-completeness

A user will hardly be satis�ed by an answer from an information integration system that is guaranteed

merely to be semantically correct. For example, answering with the empty set is always semantically

correct. Indeed, users require that they obtain all information from the system that they could get

by manually checking the sources. The notion of source-completeness formalizes this demand for a

\best possible" query plan. A query plan P is source-complete if every semantically correct query
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plan P0 is contained in P for all instances of the source relations s1; : : : ; sn consistent with the given

conservative and liberal views.

Example 5.1.4 The query plan in Example 5.1.4 is not source-complete. A used BMW o�ered for

sale in the San Jose Mercury News, for example, will not be contained in the answer of P1 although

it might be in the answer of the query plan

q2(Ma;Mo;Mi; Pr; Ph) :� ssjmn(Ma;Mo; 1991;Mi; Pr;Ph);

sbmw(Ma;Mo; 1991; Va); P r < V a.

The union of the query plans P1 and P2 is still not source-complete, because all cars in the answer

are manufactured by BMW. Information source ISinfo can be used to also consider cars of other

manufacturers:

q3(Ma;Mo;Mi; Pr; Ph) :� ssfc(Ma;Mo; 1991;Mi; Pr;Ph);

sinfo(Ma;Mo; 1991; V a); P r < V a.

q4(Ma;Mo;Mi; Pr; Ph) :� ssfmn(Ma;Mo; 1991;Mi; Pr;Ph);

sinfo(Ma;Mo; 1991; V a); P r < V a.

The query plan returns the union of P1, P2, P3, and P4 is indeed source-complete. 2

5.1.4 View-minimality

Getting a semantically correct and source-complete answer is the main concern of the user. The

information integration system, however, needs also to be concerned with the cost of coming up with

this answer. By just executing all semantically correct query plans, assuming there is only a �nite

number, and reporting the union of all answers to the user, the given answer would be guaranteed

to be source-complete. On the other hand, much information might be retrieved redundantly from

several information sources. A query plan requiring considerably fewer information sources might

still be source-complete. A query plan P is view-minimal if every semantically correct and source-

complete query plan P0 queries at least as many information sources as P.

Example 5.1.5 Because ISinfo is guaranteed to store all information for cars built after 1990,

there is no information in the BMW database for cars built in 1991 that could not be found in

ISinfo. Therefore, query plans P1 and P2 are redundant. The query plan that is semantically

correct, source-complete, and view-minimal is the union of P3 and P4. 2

5.2 Computing with source descriptions

In this chapter, liberal views are conjunctive queries. Conservative views and user queries can be

unions of conjunctive queries. Given conservative and liberal views vc1; : : : ; v
c
n, v

l
1; : : : ; v

l
n and a user

query Q, the goal is to generate a query P that satis�es the following four conditions:

� (query plan) P uses only s1; : : : ; sn and built-in predicates.
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� (semantical correctness) For every database D over the world relations and every instance I

of the source relations with vc(D) � I � vl(D), P(I) is contained in Q(D).

� (source-completeness) For every database D over the world relations and every instance I of

the source relations with vc(D) � I � vl(D), P0(I) is contained in P(I) for every semantically

correct query plan P0.

� (view-minimality) jPj � jP00j for every semantically correct and source-complete query plan

P00.

Here jPj denotes the number of information sources required in the query plan P.

The test of both semantical correctness and source-completeness is relative to instances I of

the source relations with the restriction that vc(D) � I � vl(D) The only way to e�ectively test

semantical correctness and source-completeness is to use the descriptions of the source relations

given by the conservative and liberal views. We therefore have to develop criteria for semantical

correctness and source-completeness that do not refer to a restricted set of instances of the source

relations.

5.2.1 Syntactic criterion for semantical correctness

In order to test semantical correctness it is necessary to test containment of a query plan in a user

query. Query plans are formulated in terms of source relations. User queries, on the other hand, are

formulated in terms of world relations. In order to compare queries in di�erent languages, we have to

translate one into the language of the other. Because conservative and liberal views express source

relations in terms of world relations, it is easier to translate query plans into the world schema. Let

us denote a query plan P requiring source relations si1 ; : : : ; sik as P[si1 ; : : : ; sik ]. Replacing each

occurrence of sij by the corresponding body of the de�nition of vlij yields P[v
l
i1
; : : : ; vlik ] which we

denote as P[s 7! vl].

Example 5.2.1 If P is the query plan

q(X;Y ) :� s1(X;Z); s2(Z; Y; c); X < 100

and the liberal views corresponding to source relations s1 and s2 are

vl1(X;Y ) :� p1(X;Y; Z; d) and

vl2(X;Y; Z) :� p2(X;Y ); p3(Y; Z),

then P[s 7! vl ] denotes the query

q[s 7! vl](X;Y ) :� p1(X;Z;Z
0; d); p2(Z; Y ); p3(Y; c); X < 100.

2

Semantical correctness requires that the answer of a query plan is guaranteed to satisfy the given

user query. Because the source relations themselves are unknown to the information integration

system, they must be assumed to be possibly as large as indicated by the liberal views. This

intuition motivates the following syntactic characterization of semantical correctness:
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Theorem 5.2.1 A query plan P is semantically correct with respect to Q if and only if P[s 7! vl]

is contained in Q.

Proof. If P is semantically correct with respect to Q, then for every database D over the

world relations, P(I) � Q(D) for the instance I = vl(D) of the source relations, and therefore

P[s 7! vl] � Q. If P is not semantically correct with respect to Q, then there is a database D over

the world relations, an instance I of the source relations with vc(D) � I � vl(D), and a tuple t in

P(I) that is not in Q(D). Since unions of conjunctive queries are monotone, adding tuples to I until

I = vl(D) will not delete t from P(I). Therefore, P[s 7! vl] is not contained in Q. 2

One should notice that Theorem 5.2.1 fails if we allow non-monotone queries. Consider for

example the query

q(X) :� p1(X); :p2(X)

and assume source relation s and s0 are bounded by the liberal views

vl1(X) :� p1(X) and

vl2(X) :� p2(X)

respectively. The query plan

q(X) :� s1(X); :s2(X)

satis�es P[s 7! vl ] � Q. But consider the instance with p1 = p2 = s1 = fhaig and s2 = fg. Whereas

Q would return no answer, P returns the answer a. Therefore, P is not semantically correct.

5.2.2 Syntactic criterion for source-completeness

Intuitively, a query plan P is source-complete if all information asked for by a user query and

available from source relations is retrieved. No other semantically correct query plan should be able

to retrieve more information than P. We were able to formulate a syntactic criterion for semantical

correctness by replacing all occurrences of source relations by their liberal descriptions. One might

hope to �nd a similar criterion for source-completeness. If P0[s 7! sl] is contained in P[s 7! vc], then

P0 does not need to be retrieved, because all information that might possibly be retrieved using P0 is

guaranteed to be retrieved using P. This observation suggests that source-completeness of P might

be equivalent to the condition \P0[s 7! vl ] is contained in P[s 7! vc] for all semantically correct

query plans P0". This condition is su�cient for source-completeness. It is not necessary, however,

as can be seen from the following example.

Example 5.2.2 Assume there are three source relations described by the following conservative

and liberal views:

vc1(X) :� p1(X); p2(X; a)

vl1(X) :� p1(X); p2(X;Y )
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vc
2
(X) :� p1(X); p2(X;Y )

vl
2
(X) :� p1(X)

vc
3
(X) :� p3(X; a)

vl
3
(X) :� p3(X;Y )

Given the user query

q(X) :� p1(X); p3(X;Z)

the two query plans

q1(X) :� s1(X); s3(X) and

q2(X) :� s2(X); s3(X)

are semantically correct with respect to Q. Query plans P2 is source-complete, because source

relation s1 is guaranteed to be contained in source relation s2. However,

q1[s 7! vl](X) :� p1(X); p2(X;Y ); p3(X;Z)

is not contained in

q2[s 7! vc](X) :� p1(X); p2(X;Y ); p3(X; a).

2

The problem in Example 5.2.2 is that source relation s3 appears both in P1 and in P2. Although

s3 is of course contained in s3, v
l
3
is not contained in vc

3
. A small variation on this idea, however,

provides us with a syntactic criterion for source-completeness. If P is a query plan, then let P[s 7!

s ^ vl] be the result of replacing every source relation si in P with the conjunction of si and the

corresponding body of the de�nition of vli. Let P[s 7! s_ vc] be the result of replacing every source

relation si in P with the disjunction of si and the corresponding body of the de�nition of vci .

Example 5.2.3 Continuing with Example 5.2.2, P1[s 7! s ^ vl] denotes the query

q1[s 7! s ^ vl ](X) :� s1(X); s3(X); p1(X) p2(X;Y ); p3(X;Z)

and P2[s 7! s _ vc] denotes the query P21 [P22 [ P23 [ P24 with

q21(X) :� s2(X); s3(X)

q22(X) :� s2(X); p3(X; a)

q23(X) :� p1(X); p2(X;Y ); s3(X)

q24(X) :� p1(X); p2(X;Y ); p3(X; a)

Because P1[s 7! s^ vl] is contained in P23, P1[s 7! s^ vl] is contained in P2[s 7! s_ vc]. As we will

show in the following theorem, this implies that P1 is redundant. 2
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Although both P[s 7! s ^ vl] and P[s 7! s _ vc] still contain source relations, we can use these

two notions for a syntactic criterion for source-completeness. The reason is that instance I is no

longer constrained to satisfy vc(D) � I � vli(D), but can be chosen arbitrarily. This means that

each source relation can be treated as just another world relation, and containment can be tested

without referring to a restricted set of instances of the source relations.

Theorem 5.2.2 A query plan P is source-complete if and only if for every query plan P0 with

P0[s 7! vl ] � Q, P0[s 7! s ^ vl ] is contained in P[s 7! s _ vc].

Proof. Let P be a source-complete query plan, and assume P0 is a query plan with P0[s 7! vl ] � Q.

Let D be an arbitrary database over the world relations and I an arbitrary instance of the source

relations, and let I0 be (I [ vc(D)) \ vl(D). Then I0 satis�es vc(D) � I0 � vl(D). Because by

Theorem 5.2.1, P0 is semantically correct it follows that P0[s 7! s^ vl](D; I) � P0(I0) � P(I0) �

P[s 7! s_vc](D; I). Therefore, P0[s 7! s^vl ] is contained in P[s 7! s_vc ]. For the opposite direction,

assume P0[s 7! s ^ vl ] is contained in P[s 7! s _ vc] for every query plan with P0[s 7! vl] � Q. Let

P00 be a semantically correct query plan and let D be a database over the world relations and I be

an instance of the source relations with vc(D) � I � vl(D). By Theorem 5.2.1, P00[s 7! vl] � Q

and therefore P00(I) � P00[s 7! s ^ vl ](D; I) � P[s 7! s _ vc](D; I) � P(I). Therefore, P is

source-complete. 2

5.3 Query plan optimization

In general, there will be in�nitely many query plans P0 with P0[s 7! vl] � Q. It therefore seems as

if the criterion for source-completeness is not e�ective. However, it is su�cient to only consider the

�nite number of conjunctive query plans generated by the algorithm in, for example, [43]. Applied to

a conjunctive query Q and the liberal views vl1; : : : ; v
l
n, Qian's algorithmproduces a set of conjunctive

query plans, denoted folding(Q; vl), with the following properties:

1. P[s 7! vl] � Q for every P 2 folding(Q; vl).

2. For every conjunctive query plan P0 with P0[s 7! vl] � Q, P0 � P for some P 2 folding(Q; vl).

By Theorem 5.2.1, the �rst property guarantees that each conjunctive query plan in folding(Q; vl)

is semantically correct with respect to Q. Therefore, the union of all conjunctive query plans

in folding(Q; vl), denoted
S
folding(Q; vl), is semantically correct. The second property states

that for every semantically correct conjunctive query plan P0 and every instance I of the source

relations, P0(I) is contained in
S
folding(Q; vl)(I). It follows that speci�cally for instances I sat-

isfying vc(D) � I � vl(D) for some database D over the world relations, P0(I) is contained inS
folding(Q; vl)(I). Therefore

S
folding(Q; vl ) is source-complete. The second property has a fur-

ther implication. A query P0 that is contained in a query P requires the same source relations as P,

and possibly more. It follows that there is a semantically correct, source-complete, and view-minimal

query plan of the form
S
i2I Pi with Pi 2 folding(Q; v

l) for all i 2 I.
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Information integration systems that do not have any local completeness information have to

retrieve a query equivalent to
S
folding(Q; vl) in order to guarantee source-completeness. However,S

folding(Q; vl) is in general not view-minimal. By using the local completeness information given

by the conservative views, conjunctive queries can be removed from folding(Q; vl) without losing

source-completeness. The following theorem gives the crucial criterion for identifying the proper

subset of folding(Q; vl) that is both source-complete and view-minimal.

Theorem 5.3.1 If
S
j2J Pj is a semantically correct query plan that contains every semantically

correct query plan, then for every I � J satisfying

[
j2J�I

Pj [s 7! s ^ vl] �
[
i2I

Pi[s 7! s _ vc]; (�)

the query plan
S
i2I Pi is source-complete. Moreover, if I is chosen as the set minimizing the number

of information sources required in
S
i2I Pi and satisfying (*), then

S
i2I Pi is view-minimal.

Proof. Because
S
j2J Pj contains all semantically correct query plans we have

P0(I) �
[
j2J

Pj(I)

�
[

j2J�I

Pj [s 7! s ^ vl](D; I) [
[
i2I

Pi[s 7! s _ vc](D; I)

�
[
i2I

Pi[s 7! s _ vc](D; I)

�
[
i2I

Pi(I)

for all databases D and I over the world and source relations respectively with vc(D) � I � vl(D).

Therefore,
S
i2I Pi is source-complete.

Let
S
k2K P

0
k be a union of conjunctive query plans that is semantically correct, source-complete,

and view-minimal. Because
S
j2J Pj contains all semantically correct query plans, it follows from

[46] that for every k 2 K there is a jk 2 J such that P0k is contained in Pjk. Therefore, for each

k 2 K there is a containment mapping from Pjk to P0k. This implies that for each k 2 K, all

source relations of Pjk are also required in Pk. We established that
S
k2K Pjk contains

S
k2K P

0
k

and requires at most as many source relations as
S
k2K P

0
k. Hence,

S
k2K Pjk is source-complete

and view-minimal.
S
k2K Pjk is also semantically correct because it is contained in

S
j2J Pj which

is semantically correct. The set I0 = fjkjk 2 Kg is a subset of J and satis�es condition (*) by

Theorem 5.2.2. Because
S
i2I Pi requires at most as many source relations as

S
i2I0 Pi, and

S
i2I0 Pi

is view-minimal, it follows that
S
i2I Pi is also view-minimal. 2

Theorem 5.3.1 suggests an algorithm for �nding semantically correct, source-complete and view-

minimal query plans given conjunctive user queries. First, compute folding(Q; vl), and then �nd a

subset R of folding(Q; vl) requiring the least number of source relations such that
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S
(folding(Q; vl )� R)[s 7! s ^ vl]

is contained in
S
R[s 7! s _ vc]. Then

S
R is the desired query plan.

The conjunctive case can be easily generalized to handle unions of conjunctive queries as user

queries. User queries then are of the form

q �
S
k2K

Qk

where the Qk's are conjunctive queries in terms of world relations. In this case,S
k2K

(
S
folding(Qk ; v

l))

is semantically correct with respect to Q and contains all query plans that are semantically correct

with respect to Q. Again, Theorem 5.3.1 can be applied to �nd a subset R of the set of conjunc-

tive query plans in this union such that
S
R is source-complete and view-minimal. The general

optimization algorithm is shown in Figure 5.2.

Input: - User query Q. The query can be a union of conjunctive queries.

- Liberal views vl1; : : : ; v
l
n. View de�nitions are conjunctive queries.

- Conservative views vc
1
; : : : ; vcn. View de�nitions are unions of conjunctive queries.

Output: Semantically correct, source-complete, and view-minimal query plan for Q:

(1) Convert Q into the form
S
k2KQk where the Qk's are conjunctive queries.

(2) For each k 2 K, compute folding(Qk ; v
l).

(3) Let
S
j2J Pj be the union of all conjunctive query plans Pj with Pj 2 folding(Qk ; v

l),
for all k 2 K.

(4) Let I� � J be a set minimizing the number of information sources required in
S
i2I� Pi

such that
S

i2J�I�
Pi[s 7! s ^ vl ] �

S
i2I�

Pi[s 7! s _ vc] ;

(5) return(
S
i2I�

Pi );

Figure 5.2: An algorithm for generating semantically correct, source-complete and view-

minimal query plans.

5.4 Conclusions and related work

We considered the problem of query plan optimization in the source-centric approach to information

integration. We showed how local completeness information can be used to avoid redundant accesses

to information sources. Our algorithm proceeds in two steps. In the �rst step, a semantically correct
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and source-complete query plan is generated using one of the algorithms in [43,38,39,17,19]. In

the second step, redundant parts of this query plan are eliminated. The resulting query plan is

guaranteed to be semantically correct, source-complete, and view-minimal.

Lambrecht and Kambhampati [35] apply the query optimization technique presented in this chap-

ter to minimize the recursive query plans introduced in Chapter 2. Levy [36] uses local completeness

information to test whether a query plan is complete, but doesn't consider query optimization. In

[33], Kirk et al. give an algorithm that makes use of local completeness information, but doesn't

guarantee view-minimality. Their algorithm �rst determines the part of a user query that is known

to be stored completely by some information sources. It selects a minimal set of information sources

that provide this part of the query. In a second step, every information source that might con-

tribute some data to the remaining part of the query is added. This algorithm doesn't guarantee

view-minimality, however, as can be seen from the following counterexample. Consider three in-

formation sources ISnew , ISbmw , and IShonda that store fragments of the bluebook relation from

Example 5.1.2. ISnew stores all information for cars built in 1997, and nothing else. ISbmw and

IShonda store information for cars built by BMW and Honda respectively. They are complete for

information on cars built by BMW and Honda respectively in 1997. Suppose a user requests current

market values for cars built by BMW and Honda. The part of the query that is guaranteed to be

stored is the fragment of the bluebook relation for the year 1997. ISnew alone guarantees to provide

this fragment. For the remaining part of the query though, ISbmw and IShonda have to be included.

Therefore, the query plan resulting from the algorithm in [33] accesses all three information sources.

However, this query plan is not view-minimal, because it is su�cient to only request information

from the BMW and the Honda database.

Approximating a relation by two views is studied in the context of predicate caching [32] and in

relation to the question of whether datalog programs can be approximated by unions of conjunctive

queries [8,9]. Our terminonolgy of \conservative" and \liberal" views is adopted from [32]. The work

of Chaudhuri in [8] and Chaudhuri and Kolaitis in [9] is of interest here because it points to limitations

of the source-centric approach. If for example an information source stores the transitive closure of

a predicate p, then there are no nonrecursive views that could be used as close approximations of

this source relation.



Chapter 6

The Infomaster System

We present the Infomaster system, an information integration tool developed and tested at Stanford

University. The Infomaster system makes it possible to bridge di�erences in schemata and termi-

nology between existing databases. The query planning component of Infomaster applies essentially

the algorithms presented in previous chapters. There are two main di�erences: First, there is a

third level in the abstraction hierarchy, called interface relations, in addition to world relations and

source relations. This additional level makes it possible to decouple the language used for describing

information sources from the user's query language. Second, the Infomaster system is able to handle

built-in predicates like \<" and \�".

6.1 Architecture

The Infomaster system is a generic information integration tool for integrating existing information

sources. Information sources that can be integrated can vary from expressive SQL databases, over

Z39.50 sources | a standard used for library information, to semistructured data that can be found

on the WWW. Each type of information source requires a unique program, called wrapper, that

translates between the language spoken by the information source and the language spoken by

the core Infomaster system. The internal content language used by the Infomaster system is the

knowledge interchange format (KIF), a language for representing �rst order logic expressions. For

the sake of compatibility with previous chapters we will continue to use datalog notation.

6.2 Tested application areas

The Infomaster system was developed as a research project at Stanford University. It has been

tested in a variety of application domains, some of which we are going to present here.

80
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SQL Databases

SQL Wrapper

Infomaster Query Engine

WWW Interface

Source Descriptions

WWW Wrapper

WWW Pages Z39.50 Sources

Z39.50 Wrapper

Figure 6.1: Architecture of the Infomaster System

6.2.1 Newspaper classi�eds

Several newspapers are published in the San Francisco Bay Area. All of them have rental and used

car classi�ed ads. The Infomaster system has been applied to provide a uniform search interface

to this information. For example, users can search for 2 bedroom apartments in Palo Alto, Menlo

Park, or Portola Valley under $1000. The system then gathers the corresponding classi�eds from all

relevant newspapers.

6.2.2 Product catalogs

The Infomaster system has been deployed in integrating electronic product catalogs and catalogs for

houseware items from several vendors. This application requires a lot of terminology translation.

For example, one houseware items vendor refers to its version of Te
on as Maxalon X2000. Clearly,

a user shouldn't be required to know all these details when searching for a non-stick pan.
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6.2.3 Campus databases

Stanford University itself has a wide collection of databases. The Infomaster system provides a

uniform interface to databases on people, courses, and library information.

6.3 Abstraction hierarchy

Both the user interface and the available information sources are modeled by a set of relations. The

WWW forms that users can use to enter their queries are abstracted as so-called interface relations.

Data available from an information source can also be seen as a relation, which we call source

relation. The information integration problem can be reduced in this framework to the problem of

relating the interface and the source relations in an appropriate way. Figure 6.2 shows an example

exchange(From,To,Rate)
bmw(Model,Year,Mileage,Value)
gm(Model,Year,Mileage,Value)
sjmn(Manufacturer,Model,Year,Mileage,Price)
sfc(Manufacturer,Model,Year,Mileage,Price)

conversion(Currency,Rate)
bluebook(Manufacturer,Model,Year,Mileage,Value)
classifieds(Manufacturer,Model,Year,Mileage,Price)

cars(Manufacturer,Model,Year,Mileage,Price,Value)

Source relations:

World relations:

Interface relations:

Definitions

Source
Descriptions

Information Sources

Query Engine

User Interface

Figure 6.2: The information integration problem is abstracted as describing the rela-

tionships between three kinds of relations: Interface relations conceptualize the inter-

action with a user through a WWW based user interface. Source relations represent

the data that is actually stored in the available information sources. World relations

are used as means to describe both interface and source relations and are crucial in the

query planning process.

of interface and source relations. The application domain in the example is the following: The San

Francisco Chronicle and the San Jose Mercury News both contain a used car classi�eds section in

which cars are o�ered for sale. Moreover, we assume that we have access to information of car

manufacturers General Motors and BMW. Both manufacturers provide data on the average market
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value of their cars for a given model, year, and mileage. Our goal is to provide a WWW interface

to users that integrates all this information. Source relations sfc and sjmn model the information

parsed from the used car classi�eds in the San Francisco Chronicle and the San Jose Mercury News

respectively. Source relations gm and bmw represent the information available from the two car

manufacturers. Interface relation cars represents the WWW form presented to the user.

If we were sure that we would never add new information sources and that already integrated

information sources never changed their content, then we could relate interface relations directly to

source relations. However, we want to be more 
exible in our design. For example, it is likely that

we want to improve our service in the future by also including classi�eds published in the Palo Alto

Weekly, the Sacramento Bee, or the Los Angeles Times. In order to simplify adding new information

sources and accommodating the changes in content of existing ones, we introduce a new level into

our abstraction hierarchy. We call these new relations world relations. We express both interface

relations and source relations in the terms of world relations. This allows us to easily integrate new

information sources. Also, we can easily change the user interface without having to integrate the

information sources anew.

World relations are chosen to be the basic building blocks of the application domain at hand.

In our example, there are basically two kinds of information: classi�ed ads and general information

on car models. We represent all classi�ed ads by the world relation classi�eds and the market value

information on car models by the world relation bluebook.

The example contains one further world relation called conversion that provides the current

exchange rate from a given currency into dollar. There is also an additional source relation exchange

that represents information provided by some currency exchange.

6.4 Descriptions of relationships

The previous section described how the information integration problem can be broken down into an

abstraction hierarchy of source, world, and interface relations. Here we will show how these di�erent

abstraction levels can be related to each other. The descriptions of these relationships will be used

by the query planner to translate user queries into queries that can be answered by the information

sources, and to combine the resulting answers.

We describe both interface relations and source relations in terms of world relations. Interface

relation cars combines information from classi�ed ads with the average market value of the corre-

sponding model from the bluebook world relation. This can be expressed in the following de�nition:

cars(Manufacturer,Model,Year,Mileage,Price,Value) :�

classi�eds(Manufacturer,Model,Year,Mileage,Price),

bluebook(Manufacturer,Model,Year,Mileage,Value)

Both the San Francisco Chronicle and the San Jose Mercury News provide classi�ed ads. How-

ever, none of them publishes all classi�ed ads. Therefore, the sfc and sjmn source relations are

contained in (and not equivalent to) the classi�eds world relation. This containment is expressed by

the following liberal source descriptions:
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sfcl(Manufacturer,Model,Year,Mileage,Price) :�

classi�eds(Manufacturer,Model,Year,Mileage,Price)

sjmnl(Manufacturer,Model,Year,Mileage,Price) :�

classi�eds(Manufacturer,Model,Year,Mileage,Price)

General Motors and BMW, on the other hand, do provide all information on their respective

car models. Therefore, source relations gm and bmw are equivalent to the corresponding fragments

of the bluebook world relation. The distinction between containment and equivalence is important

for the query optimization process. For example, even if there were another information source

storing bluebook information for General Motors cars, it would be unnecessary to access both this

information source and the original General Motors source because the original source is guaranteed

to store all relevant information. On the other hand, a classi�ed ad could be published in the San

Francisco Chronicle or the San Jose Mercury News. None of the two information sources is complete.

Equivalence is expressed by identical conservative and liberal source descriptions.

gmc;l(Model,Year,Mileage,Value) :�

bluebook(gm,Model,Year,Mileage,Value)

bmwc;l(Model,Year,Mileage in km,Value in DM) :�

bluebook(bmw,Model,Year,Mileage,Value),

conversion(dm,Rate),

Mileage = Mileage in km � 1.6,

Value = Value in DM � Rate

Information provided from the BMW information source is stored in km and DM instead ofmiles and

Dollars. Therefore, the \mileage" in km has to be related to the mileage (in miles), and the market

value in DM has to be related to the corresponding value in Dollars. For the second translation, the

current exchange rate has to be obtained. Finally, the rule

exchangec;l(From,dollar,Rate) :�

conversion(From,Rate)

expresses that the currency exchange provides data of exchange rates from a given currency into

Dollar.

6.5 Query processing

Query processing in the Infomaster system is a three-step process. Assume the user asks a query Q.

This query is expressed in terms of interface relations. In a �rst step, query Q is rewritten into a

query in terms of world relations. We call this step reduction. In a second step, the descriptions of

the source relations have to be used to translate the rewritten query into a query in terms of source

relations. This second step involves the query planning described in Chapter 2. The query in terms

of source relations is an executable query plan, because it only refers to data that is actually available
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Figure 6.3: The three steps of Infomaster's query processing.

from the information sources. However, the generated query plan might be ine�cient. Using the

conservative source descriptions, the query plan can be optimized as described in Chapter 5.

As an example query, assume that a user asks for BMWs built in 1996 that are for sale for a

price below their average market value:

q(Model,Mileage,Price) :�

cars(bmw,Model,1996,Mileage,Price,Value),

Price < Value

We will discuss the three steps of the query planning process in the following.

6.5.1 Reduction

The reduction step in the query processing sequence is very simple. It is essentially a macro expan-

sion. The user query is given in terms of interface relations, and interface relations are de�ned in

terms of world relations. Therefore, the reduction step requires only to substitute interface relations

by the corresponding de�nitions. In our example, the user query is rewritten to the following query

in terms of world relations:

q(Model,Mileage,Price) :�

classi�eds(bmw,Model,1996,Mileage,Price),

bluebook(bmw,Model,1996,Mileage,Value),

Price < Value

6.5.2 Query planning

The interesting step in the query processing sequence is the query planning step. It requires to

translate a query in terms of world relations into a query in terms of source relations. This is

more complicated than the reduction step, because source relations are expressed in terms of world
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relations and not vice versa1. Chapter 2 presents algorithms for solving this problem for the case that

both source descriptions and user queries do not contain any built-in predicates. In a \real" system

like Infomaster though, built-in predicates like \�" and \<" are a must. As we showed in Chapter 4,

maximally-contained query plans might not exist in the presence of built-in predicates. For all

practical purposes though, it is su�cient to consider the built-in predicates as \ordinary" predicates

during query planning. For example, the condition Value = Value in DM * Rate is translated into

times(Value,Value in DM,Rate) and the condition Price < Value is translated into less(Price,Value).

Each subset of two attributes of relation times functionally determines the remaining attribute.

Therefore, there are three chase rules for relation times. The resulting query plan in our example is

the following:

q(Mo1,Mi1,Pr1) :� classi�eds(Ma1,Mo2,Ye1,Mi2,Pr2),

bluebook(Ma2,Mo3,Ye2,Mi3,Va1), less(Pr3,Va2),

e(Mo1,Mo2), e(Mo2,Mo3), e(Mi1,Mi2), e(Mi2,Mi3),

e(Pr1,Pr2), e(Pr2,Pr3), e(Ma1,bmw), e(Ma2,bmw),

e(Va1,Va2), e(Ye1,1996), e(Ye2,1996)

classi�eds(Ma,Mo,Ye,Mi,Pr) :� sfc(Ma,Mo,Ye,Mi,Pr)

classi�eds(Ma,Mo,Ye,Mi,Pr) :� sjmn(Ma,Mo,Ye,Mi,Pr)

bluebook(gm,Mo,Ye,Mi,Va) :� gm(Mo,Ye,Mi,Va)

bluebook(bmw,Mo,Ye,f1(Mo,Ye,Mi km,Va DM),f2(Mo,Ye,Mi km,Va DM))

:� bmw(Mo,Ye,Mi km,Va DM)

conversion(dm,f3(Mo,Ye,Mi km,Va DM)) :� bmw(Mo,Ye,Mi km,Va DM)

times(f1(Mo,Ye,Mi km,Va DM),Mi km,1.6) :� bmw(Mo,Ye,Mi km,Va DM)

times(f2(Mo,Ye,Mi km,Va DM),Va DM,f3(Mo,Ye,Mi km,Va DM))

:� bmw(Mo,Ye,Mi km,Va DM)

conversion(From,Rate) :� exchange(From,Dollar,Rate)

e(Y1,Y2) :� conversion(X1,Y1), conversion(X2,Y2), e(X1,X2)

e(X1,X2) :� times(X1,Y1,Z1), times(X2,Y2,Z2), e(Y1,Y2), e(Z1,Z2)

e(Y1,Y2) :� times(X1,Y1,Z1), times(X2,Y2,Z2), e(X1,X2), e(Z1,Z2)

e(Z1,Z2) :� times(X1,Y1,Z1), times(X2,Y2,Z2), e(X1,X2), e(Y1,Y2)

e(X,Y) :� e(X,Z), e(Z,Y)

6.5.3 Query optimization

The query plan generated in the query planning phase can be simpli�ed a lot before it is executed.

The �nal result of the simpli�cation is the following plan:

1It is of course possible to de�ne world relations in terms of source relations. This would simplify the query
planning step. However, adding an information source or accommodating the change in content of an information

source then would become more di�cult.
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q(Model,Mileage,Price) :�

(sfc(bmw,Model,1996,Mileage,Price)

_ sjmn(bmw,Model,1996,Mileage,Price)),

bmw(Model,1996,Mileage in km,Value in DM),

exchange(dm,dollar,Rate),

Mileage = Mileage in km � 1.6,

Value = Value in DM � Rate,

Price < Value

6.6 Conclusions and related work

We have given an overview of the Infomaster system. We presented the overall system architecture,

some tested application areas, and showed how information sources can be described declaratively

using an abstraction hierarchy of source, world, and interface relations. Finally, we explained the

query planning process in Infomaster, consisting of a reduction, query planning, and query opti-

mization phase.

The design of the Infomaster system builds upon extensive work in the �eld of information in-

tegration. Related e�orts to integrate distributed information sources are the Information Manifold

project [39], the SIMS project [3], the Occam project [34], and the TSIMMIS project [13]. The

Information Manifold project and the SIMS project explore the use of descriptions logics for de-

scribing information sources. The Occam project uses general AI planning techniques to generate

information gathering plans. Finally, the TSIMMIS project uses pattern matching techniques to

match user queries against prede�ned queries with stored query plans.
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